Haibo Gao, Xingguo Song, Liang Ding, and Zongquan Deng


  1. [1] R.W. Brockett, Asymptotic stability and feedback stabilization, Differential Geometric Control Theory, Birkhäuser, Boston, MA, 1983, 181–191.
  2. [2] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, A stable tracking control method for an autonomous mobile robot, Proc. IEEE Int. Conf. on Robotics and Automation, Cincinnati, OH, 1990, 384–389.
  3. [3] D.H. Kim and J.H. Oh, Tracking control of a two-wheeled mobile robot using input–output linearization, Control Engineering Practice, 7(3), 1999, 369–373.
  4. [4] N.R. Julio et al., Mobile robot path tracking using a robust PID controller, Control Engineering Practice, 9(11), 2001, 1209–1214.
  5. [5] K.D. Do and J. Pan, Global output-feedback path tracking of unicycle-type mobile robots, Robotics and Computer-Integrated Manufacturing, 22(2), 2006, 166–179.
  6. [6] G. Oriolo, A.D. Luca, and M. Vendittelli, WMR control via dynamic feedback linearization: design, implementation, and experimental validation, IEEE Transactions on Control Systems Technology, 10(6), 2002, 835–852.
  7. [7] S.S. Ge, J. Wang, T.H. Lee, and G.Y. Zhou, Adaptive robust stabilization of dynamic nonholonomic chained systems, Journal of Robotic Systems, 18(3), 2001, 119–133.
  8. [8] Z.J. Li and C.Q. Xu, Adaptive fuzzy logic control of dynamic balance and motion for wheeled inverted pendulums, Fuzzy Sets and Systems, 160(12), 2009, 1787–1803.
  9. [9] S.H. Kim, C.K. Park, and F. Harashima, A self-organized fuzzy controller for wheeled mobile robot using an evolutionary algorithm, IEEE Transactions on Industrial Electronics, 2(48), 2001, 213–228.
  10. [10] R. Fierro and F.L. Lewis, Control of a nonholonomic mobile robot: backstepping kinematics into dynamics, Journal of Robotic Systems, 14(3), 1997, 149–163.
  11. [11] S.S. Ge and C. Wang, Adaptive NN control of uncertain nonlinear pure-feedback systems, Automatica, 38(4), 2002, 671–682.
  12. [12] D. Theodoridis, Y. Boutalis, and M. Christodoulou, A new adaptive neuro-fuzzy controller for trajectory tracking of robot manipulators, International Journal of Robotics and Automation, 26(1), 2011, 1–12.
  13. [13] D. Theodoridis, Y. Boutalis, and M. Christodoulou, Dynamical recurrent neuro–fuzzy identification schemes employing switching parameter hopping, International Journal of Neural Systems, 22(2), 2012, 1–16.
  14. [14] T. Yucelen and W.M. Haddad, Low-frequency learning and fast adaptation in model reference adaptive control, IEEE Transactions on Automatic Control, 2012, 1–6, DOI: 10.1109/TAC.2012.2218667.
  15. [15] N.B. Karayiannis and G.W. Mi, Growing radial basis neural networks: merging supervised and unsupervised learning with network growth techniques,IEEE Transactions on Neural Networks, 6(8), 1997, 1492–1506.
  16. [16] J.R. Jung and B.J. Yum, Artificial neural network based approach for dynamic parameter design, Expert System with Applications, 38(1), 2011, 504–510.
  17. [17] F.L. Lewis, S. Jagannathan, and A. Yesildirek, Neural network control of robot manipulators and nonlinear systems (London: Taylor & Francis, 1999).
  18. [18] Y. Gao and M.J. Er, Online adaptive fuzzy neural identification and control of a class of MIMO nonlinear systems, IEEE Transactions on Fuzzy Systems, 11(4), 2003, 462–477.
  19. [19] J. Nakanishi, Composite adaptive control with locally weighted statistical learning, Neural Networks, 18(1), 2005, 71–90.
  20. [20] H.C. Liaw, J.A. Farrell, and S. Schaal, Robust neural network motion tracking control of piezoelectric actuation systems for micro/nanomanipulation, IEEE Transactions on Neural Networks, 20(2), 2009, 356–367.
  21. [21] R.A. Horn and C.R. Johnson, Matrix analysis (New York: Cambridge University Press, 1985).
  22. [22] K.K. Hassan, Nonlinear systems, 2nd edition, Prentice Hall PTR, (1996).

Important Links:

Go Back