Keyi Wang, Lixun Zhang, Hao Meng, and Fuqiang Liu


  1. [1] L.X. Zhang, K.Y. Wang, and J.Y. Zhang, Analysis on pelvis’degree of freedom in the period of human-body gait, Journal of Machine Design, 25(1), 2008, 12–15.
  2. [2] S. Hesse, H. Schmidt, and C. Werner, Machines to support motor rehabilitation after stroke: 10 years of experience in Berlin, Journal of Rehabilitation Research and Development, 43(5), 2006, 671–678.
  3. [3] S. Hussein, H. Schmidt, S. Hesse, et al., Effect of different training modes on ground reaction forces during robot assisted floor walking and stair climbing, 2009 IEEE Int. Conf. on Rehabilitation Robotics, Kyoto, Japan, 2009, 845–850.
  4. [4] J.L. Emken, J.H. Wynne, S.J. Harkema, et al., A robotic device for manipulating human stepping, IEEE Transactions on Robotics, 22(1), 2006, 185–189.
  5. [5] D.J. Reinkensmeyer, D. Aoyagi, J.L. Emken, et al., Tools for understanding and optimizing robotic gait training, Journal of Rehabilitation Research and Development, 43(5), 2006, 657–670.
  6. [6] C.G. Burgar, P.S. Lum, P.C. Shor, et al., Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience, Journal of Rehabilitation Research and Development, 37(6), 2000, 663–673.
  7. [7] A.M. Simon, G.R. Brent, and D.P. Ferris, Symmetry-based resistance as a novel means of lower limb rehabilitation, Journal of Biomechanics, 40(6), 2007, 1286–1292.
  8. [8] L.X. Zhang, L.J. Wang, F.L. Wang, et al., Gait simulation of new robot for human walking on sand, Journal of Central South University of technology, 16(6), 2009, 971–975.
  9. [9] W.Z. Yu, J.W. Qian, Z.G. Feng, et al., Kinematics analysis of lower limb exoskeleton orthosis, Journal of Shanghai University: Natural Science, 16(2), 2010, 130–134.
  10. [10] C.J. Yang, J. Zhang, M.Y. Deng, et al., A kind of wheelchair-style training of paraplegic patients walking robot: China, CN200610155047.0, 2007.
  11. [11] K. Usher, G. Winstanley, P. Corke, et al., Air vehicle simulator: an application for a cable array robot, Proc. 2005 IEEE Int. Conf. on Robotics and Automation, Barcelona, Spain, 2005, 2241–2246.
  12. [12] J. Huang, M. Hiller, and S.Q. Fang, Simulation modeling of the motion control of a two degree of freedom, tendon based, parallel manipulator in operational space using MATLAB,Journal of China University of Mining and Technology, 17(2), 2007, 179–183.
  13. [13] P. Bosscher, A.T. Riechel, and I. Ebert-Uphoff, Wrench-feasible workspace generation for cable-driven robots, IEEE Transactions on Robotics, 22(5), 2006, 890–902.
  14. [14] E. Ottaviano, M. Ceccarelli, and P. Pelagalli, A performance analysis of a 4 cable-driven parallel manipulator, 2006 IEEE Conference on Robotics, Automation and Mechatronics,Bangkok, Thailand, 2006, 1–6.
  15. [15] B. Zi, B.Y. Duan, and J.L. Du, Dynamic modeling and numerical simulation of cable-driven parallel manipulator, Chinese Journal of Mechanical Engineering, 43(11), 2007, 82–88.
  16. [16] V. Richard, Analysis of the workspace of tendon-based stewart platforms (Duisburg: Gerhard Mercator University, 2004), 27–28.
  17. [17] L. Wang, T. Wang, J.S. Wang, et al., Measurement research of normal human gaits, Journal of Harbin Engineering University, 29(6), 2008, 589–593, 598.
  18. [18] K.Y. Wang, L.X. Zhang, J.Y. Zhang, et al., Dynamics on pelvis for a 1R2T wire-driven parallel robot, Journal of Jiangsu University: Natural Science, 31(2), 2010, 131–135.

Important Links:

Go Back