Qiuling Zou and James Yang


  1. [1] S. McGuan, Human Modeling – from bubblemen to skeletons, SAE Technical Paper 2001-01-2086, 2001.
  2. [2] H.J. Kim, E. Horn, J.S. Arora, and K. Abdel-Malek, An optimization-based methodology to predict digital human gait motion, 2005 Digital human modeling for design and engineering conference (Iowa City, IA, 2005).
  3. [3] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, Proc. 2003 IEEE Int. Conf. on Robotics and Automation, Taipei, Taiwan, 2003, 1620–1626.
  4. [4] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and K. Tanie, Planning walking patterns for a biped robot, IEEE Transactions on Robotics and Automation, 17(3), 2001, 280–289.
  5. [5] M. Vukobratović, B. Borovac, D. Surla, and D. Stokic, Biped locomotion, dynamics, stability, control and application (Scientific Fundamentals of Robotics), (Berlin: Springer Verlag, 1990).
  6. [6] Y. Xiang, H.J. Chung, A. Mathai, S. Rahmatalla, J. Kim, T. Marler, S. Beck, J. Yang, J.S. Arora, and K. Abdel-Malek, 2007. Optimization-based dynamic human walking prediction, SAE Human Modeling for Design and Engineering Conference (Seattle, WA: Society of Automotive Engineers), Warrendale, PA, SAE paper number 2007-01-2489.
  7. [7] Y.J. Xiang, J.S. Arora, S. Rahmatalla, and K. Abdel-Malek, Optimization-based dynamic human walking prediction: One step formulation, International Journal of Numerical Methods Engineering, 79, 2009, 667–695.
  8. [8] R.R. Neptune, C.P. McGowan, and S.A. Kautz, Forward dynamics simulations provide insight into muscle mechanical work during human locomotion, Exercise and Sport Science Reviews, 37(4), 2009, 203–210.
  9. [9] F.C. Anderson and M.G. Pandy, Dynamic optimization of human walking, Journal of Biomechanical Engineering, 123(5), 2001, 381–390.
  10. [10] J. Yang, T. Marler, H. Kim, J. Arora, and K. Abdel-Malek, Multi-objective optimization for upper body posture prediction, 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (Albany, NY, 2004).
  11. [11] D. Tlalolini, Y. Aoustin, and C. Chevallereau, Design of a walking cyclic gait with single support phases and impacts for the loco-motor system of a thirteen-link 3D biped using the parametric optimization, Multibody System Dynamics, 23, 2010, 33–56.
  12. [12] Q. Wang, Y. Xiang, H. Kim, J. Arora, et al., Alternative Formulations for Optimization-based-Digital Human Motion Prediction, SAE Technical Paper 2005-01-2691, 2005. doi:10.4271/2005-01-2691.
  13. [13] P.H. Channon, S.H. Hopkins, and D.T. Pham, Derivation of optimal walking motions for a bipedal walking robot, Robotica, 10, 1992, 165–172.
  14. [14] D.G. Thelen and F.C. Anderson, Using computed muscle control to generate forward dynamic simulations of human walking from experimental data, Journal of Biomechanics, 39(6), 2006, 1107–1115.
  15. [15] J.H. Kim, Y.J. Xiang, R. Bhatt, J. Yang, H.J. Chung, J.S. Arora, and K. Abdel-Malek, Generating effective whole-body motions of a human-like mechanism with efficient ZMP formulation, International Journal of Robotics and Automation, 24(2), 2009, 125–136.
  16. [16] D. Katic and M. Vukobratović, Survey of intelligent control techniques for humanoid robots, Journal of Intelligent Robotic System, 37(2), 2003, 117–141.
  17. [17] T. Saidouni and G. Bessonnet, Generating globally optimized sagittal gait cycles of a biped robot, Rotobitca, 21, 2003, 199–210.
  18. [18] Y. Hurmuzlu and A. Ephanov, Generating pathological gait patterns via the use of robotic locomotion models, Journal of Technological Health Care, 10, 2002, 135–146.
  19. [19] S.J. Qin and T.A. Badgwell, A survey of industrial model predictive control technology, Control Engineering Practice, 11(7), 2003, 733–764.
  20. [20] M. Vukobratović and B. Borovac, Zero-moment point – thirty five years of its life, International Journal of Humanoid Robotics, 1(1), 2004, 157–173.
  21. [21] A. Goswami, Postural stability of biped robots and the foot-rotation indicator (FRI) point, International Journal of Robotics Research, 18(6), 1999, 523–533.
  22. [22] P. Sardain and G. Bessonnet, Forces acting on a biped robot: Center of pressure-zero moment point, IEEE Transactions on Systems, Man, and Cybernetics Part A, 34(5), 2004, 630–637.
  23. [23] M.B. Popovic, A. Goswami, and H. Herr, Ground reference points in legged locomotion: Definitions, biological trajectories and control implications, International Journal of Robotics research, 24(12), 2005, 1013–1032.
  24. [24] T. Takubo, K. Inoue, and T. Arai, Pushing an object considering the hand reflect forces by humanoid robot in dynamic walking, Proceedings of the IEEE International Conference on Robotics and Automation, 3, 2005, 1706–1711.
  25. [25] K. Harada, S. Jajita, K. Kaneko, and H. Hirukawa, Dynamics and balance of a humanoid robot during manipulation tasks, IEEE Transactions on Robotics, 22(3), 2006, 568–575.
  26. [26] J. Anquez, T. Boubekeur, L. Bibin, E. Angelini, and I. Bloch, Utero-fetal unit and pregnant woman modeling using a computer graphics approach for dosimetry studies, MICCAI ’09 Proc. 12th Int. Conf. on Medical Image Computing and Computer-Assisted Intervention – Part II, Loudon, UK, 2009, 1025–1032.
  27. [27] L. Bibin, J. Anquez, J. Alcalde, T. Boubekeur, and E. Angelini, Whole-body pregnant woman modeling by digital geometry processing with detailed uterofetal unit based on medical images, IEEE Transactions on Biomedical Engineering, 57(10), 2010, 2346–2358.
  28. [28] B. Howard, J. Yang, and J. Gragg, Toward a new digital pregnant woman model and posture prediction, 1st International Conference on Applied Digital Human Modeling (Miami, FL, 2010).
  29. [29] J. Kim, Y. Xiang, J. Yang, J. Arora, and K. Abdel-Malek, Dynamic motion planning of overarm throw for a biped human multibody system, Multibody System Dynamics, 24(1), 2010, 1–24.
  30. [30] M. Ackermann and A.J. van den Bogert, Optimality principles for model-based prediction of human gait. Journal of Biomechanics, 43(6), 2010, 1055–1060.
  31. [31] J.D. Rupp, K.D. Klinich, S. Moss, J. Zhou, M.D. Pearlman, and L.W. Schneider, Development and testing of a prototype pregnant abdomen for the small-female Hybrid III ATD, Stapp Car Crash Journal, 45, 2001, 61–78.
  32. [32] J.D.A.S.L.W. Klinich, B. Ebby, J.D. Rupp, and M.D. Pearlman, Seated anthropometry during pregnancy, University of Michigan Transportation Institute, Ann Arbor, MI, 1999.
  33. [33] B. Howard, A. Cloutier, and J. Yang, Physics-based seated posture prediction for pregnant women and validation considering ground and seat pan contacts, Transactions of ASME Journal of Biomechanical Engineering, 134(7), 2012, 071004-1–071004-10.
  34. [34] B. Howard and J. Yang, Calculating support reaction forces in physics-based seated posture prediction for pregnant women, International Journal of Robotics and Automation, 27(3), 2012, 308–321.
  35. [35] J. Gragg, J. Yang, and B. Howard, Hybrid method for driver accommodation using optimization-based digital human models, Computer Aided Design, 44(1), 2012, 29–39.
  36. [36] P.E. Gill, W. Murray, and M.A. Saunders, User’s guide for Snopt version 6, a Fortran package for large-scale nonlinear programming, 2001.
  37. [37] W.H. Gage, D.A. Winter, J.S. Frank, A.L. Adkin, Kinematic and kinetic validity of the inverted pendulum model in quiet standing, Gait Posture, 19(2), 2004, 124–132.
  38. [38] A.M. Bacsi and J.G. Colebatch, Evidence for reflex and perceptual vestibular contributions to postural control, Experimental Brain Research, 160(1), 2005, 22–28.

Important Links:

Go Back