Tracking Control of a Gyroscopically Stabilized Robot

Y. Ou and Y. Xu


  1. [1] I. Kolmanovsky & N.H. McClamroch, Development in non-holonomic control problems, IEEE Control Systems Magazine,15, 1995, 20–36. doi:10.1109/37.476384
  2. [2] J. Zabczyk, Some comments on stabilizability, Applied Mathematics and Optimization, 19, 1989, 1–9. doi:10.1007/BF01448189
  3. [3] A.M. Bloch, M. Reyhanoglu, & N.H. McClamroch, Control andstabilization of nonholonomic dynamic systems, IEEE Trans.on Automation Control, 37(11), 1992, 1746–1756. doi:10.1109/9.173144
  4. [4] G. Indiveri, Kinematic time-invariant control of a 2D non-holonomic vehicle, Proc. 38th IEEE Conf. on Decision andControl, Phoenix, AZ, 1999, 2112–2117. doi:10.1109/CDC.1999.831231
  5. [5] A. Tayebi & A. Rachid, A unified discontinuous state feedbackcontroller for the path-following and the point-stabilizationproblems of a unicycle-like mobile robot, Proc. IEEE Int. Conf.on Control Applications, Hartford, CT, 1997, 31–35. doi:10.1109/CCA.1997.627459
  6. [6] T.C. Lee, K.T. Song, C.H. Lee & C.C. Teng, Tracking controlof unicycle-modeled mobile robots using a saturation feedbackcontroller, IEEE Trans. on Control System Technology, 9(2),2001, 305–318. doi:10.1109/87.911382
  7. [7] K.W. Au & Y. Xu, Decoupled dynamics and stabilization ofsingle wheel robot, Proc. IEEE/ISJ Conf. on Intelligent Robotsand Systems, Kyongju, South Korea, 1999, 197–203.
  8. [8] K.W. Au & Y. Xu, Path following of a single wheel robot,Proc. IEEE Conf. on Robotics and Automation, San Francisco,CA, 2000, 2925–2929. doi:10.1109/ROBOT.2000.846472
  9. [9] C. Rui & N.H. McClamroch, Stabilization and asymptotic pathtracking of a rolling disk, Proc. 34th IEEE Conf. on Decisionand Control, New Orleans, LA, 1995, 4294–4299. doi:10.1109/CDC.1995.478915
  10. [10] H.B. Brown & Y. Xu, A single wheel gyroscopically stabilized robot, Proc. IEEE Conf. on Robotics and Automation, Minneapolis, MN, 1996, 3658–3663. doi:10.1109/ROBOT.1996.509270
  11. [11] M. Aicardi, G. Casalino, A. Balestrino, & A. Bicchi, Closedloop smooth steering of unicycle-like vehicles, Proc. 33th IEEEConf. on Decision and Control, Lake Buena Vista, FL, 1994,2455–2458. doi:10.1109/CDC.1994.411509
  12. [12] G.C. Nandy & Y. Xu, Dynamic model of a gyroscopic wheel,Proc. IEEE Conf. on Robotics and Automation, Leuven, Belgium, 1998, 2683–2688. doi:10.1109/ROBOT.1998.680751
  13. [13] M. Reyhanoglu, A.J. van der Schaft, N.H. McClamroch, &I. Kolmanovsky, Dynamics and control of a class of underactuated mechanical systems, IEEE Trans. on Automatic Control, 44(9), 1999, 1663–1671. doi:10.1109/9.788533
  14. [14] G. Oriolo & Y. Nakamura, Control of mechanical systemswith second-order nonholonomic constraints: Underactuatedmanipulators, Proc. 30th IEEE Conf. on Decision and Control,Brighton, U.K., 1991, 2398–2403. doi:10.1109/CDC.1991.261620
  15. [15] D. Shevitz & B. Paden, Lyapunov stability theory of nonsmooth systems, IEEE Trans on Automatic Control, 39(9), 1994, 1910-1914. doi:10.1109/9.317122

Important Links:

Go Back