Zhiming Fan, Kefeng Li, Guangyuan Zhang, Zhenfang Zhu, Peng Wang, Zhenfei Wang, Chen Fu, Xiaotong Li, Yongshuo Zhang, Yongpeng Zhao
[1] C. Cheng, Q. Sha, B. He, G. Li, Path planning and obstacleavoidance for AUV: A review, Ocean Engineering, 235, 2021,109355. [2] H. Qin, S. Shao, T. Wang, X. Yu, Y. Jiang, Z. Cao, Reviewof autonomous path planning algorithms for mobile robots,Drones, 7(3), 2023, 211. [3] B. Wu, X. Chi, C. Zhao, et al., Dynamic path planning forforklift AGV based on smoothing A and improved DWAhybrid algorithm, Sensors, 22(18), 2022, 7079. [4] L. Chang, L. Shan, C. Jiang, et al., Reinforcement basedmobile robot path planning with improved dynamic windowapproach in unknown environment, Autonomous Robots, 45,2021, 51–76. [5] M. Kobayashi, H. Zushi, T. Nakamura, et al., Localpath planning: Dynamic window approach with Q-learningconsidering congestion environments for mobile robot, IEEEAccess, 11, 2023, 96733–96742. [6] M. Reda, A. Onsy, A. Y. Haikal, A. Ghanbari, Path planningalgorithms in the autonomous driving system: A comprehensivereview, Robotics and Autonomous Systems, 174, 2024, 104630. [7] J. R. S´anchez-Ib´a˜nez, C. J. P´erez-del-Pulgar, A. Garc´ıa-Cerezo, Path planning for autonomous mobile robots: A review,Sensors, 21(23), 2021, 7898. [8] F. Bounini, D. Gingras, H. Pollart, D. Gruyer, Modified artificialpotential field method for online path planning applications,Proc. 2017 IEEE Intelligent Vehicles Symposium (IV), IEEE,2017, 180–185. [9] C. Lv, X. Fan, M. Sun, A fusion algorithm for path planningof mobile robots in environments with dynamic obstacles,International Journal of Robotics and Automation, 39(2), 2024. [10] D. Wu, L. Wei, G. Wang, L. Tian, G. Dai, APF-IRRT:An improved informed rapidly-exploring random trees-staralgorithm by introducing artificial potential field method formobile robot path planning, Applied Sciences, 12(21), 2022,10905. [11] X. Du, P. Luo, X. Lv, Path planning algorithm based onimproved RRT and artificial potential field, Proc. 2024 8th Int.Conf. on Electrical, Mechanical and Computer Engineering(ICEMCE), IEEE, 2024, 1767–1774. [12] I. Noreen, A. Khan, Z. Habib, Optimal path planning usingRRT based approaches: A survey and future directions,International Journal of Advanced Computer Science andApplications, 7(11), 2016. [13] X. Cui, C. Wang, Y. Song, L. Mei, S. Wu, More Quickly-RRT: Improved Quick Rapidly-exploring Random Tree Staralgorithm based on optimized sampling point with better initialsolution and convergence rate, Engineering Applications ofArtificial Intelligence, 133, 2024, 108246. [14] D. Fox, W. Burgard, S. Thrun, The dynamic window approachto collision avoidance, IEEE Robotics & Automation Magazine,4(1), 1997, 23–33. [15] R. Simmons, The curvature-velocity method for local obstacleavoidance, Proc. IEEE Int. Conf. on Robotics & Automation,1996, 3375–3382. [16] O. Brock, O. Khatib, High-speed navigation using the globaldynamic window approach, Proc. 1999 IEEE Int. Conf. onRobotics and Automation, IEEE, 1999, 341–346. [17] P. Ogren, N. E. Leonard, A convergent dynamic windowapproach to obstacle avoidance, IEEE Transactions onRobotics, 21(2), 2005, 188–195. [18] M. Seder, I. Petrovic, Dynamic window based approach tomobile robot motion control in the presence of moving obstacles,Proc. 2007 IEEE Int. Conf. on Robotics and Automation,IEEE, 2007, 1986–1991. [19] A. ¨Ozdemir, V. Sezer, Follow the gap with dynamic windowapproach, International Journal of Semantic Computing,12(01), 2018, 43–57. [20] L. A. Nguyen, T. D. Ngo, T. D. Pham, X. T. Truong, Anefficient navigation system for autonomous mobile robots indynamic social environments, International Journal of Roboticsand Automation, 37(1), 2022, 97–106. [21] L. Gao, Y. Wu, L. Wang, et al., End-to-end autonomous vehiclenavigation control method guided by the dynamic windowapproach, Proc. 2023 IEEE 6th Int. Electrical and EnergyConf. (CIEEC), IEEE, 2023, 4472–4476. [22] X. Mai, D. Li, J. Ouyang, et al., An improved dynamic windowapproach for local trajectory planning in the environment withdense objects, J. Phys.: Conf. Ser., 1884(1), IOP Publishing,2021, 012003. [23] L. Jiang, H. Huang, Z. Ding, Path planning for intelligentrobots based on deep Q-learning with experience replay andheuristic knowledge, IEEE/CAA Journal of Automatica Sinica,7(4), 2019, 1179–1189. [24] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez,Y. Tassa, et al., Continuous control with deep reinforcementlearning, arXiv preprint arXiv:1509.02971, 2015. [25] Y. Zhao, X. Wang, R. Wang, et al., Path planning for mobilerobots based on TPR-DDPG, Proc. 2021 Int. Joint Conf. onNeural Networks (IJCNN), IEEE, 2021, 1–8. [26] Y. Du, X. Zhang, Z. Cao, et al., An optimized path planningmethod for coastal ships based on improved DDPG andDP, Journal of Advanced Transportation, 2021(1), 2021,7765130. [27] P. Li, X. Ding, H. Sun, et al., Research on dynamic pathplanning of mobile robot based on improved DDPG algorithm,Mobile Information Systems, 2021(1), 2021, 5169460. [28] S. Wen, W. L. Zhen, T. Wang, J. Chen, H. K. Lam, Q. Shi,Z. Li, Research on obstacle avoidance of robotic manipulatorsbased on DDPG and transfer learning, International Journalof Robotics and Automation, 38(2), 2023. [29] Z. Hu, C. Xu, Z. Zhou, Z. Deng, c, Journal of Electronics &Information Technology, 44(11), 2022. [30] Y. Cheng, R. Chi, S. Huang, T. L¨u, Uncertain trajectoryprediction method based on non-parametric density estimation,Acta Automatica Sinica, 45(4), 2019, 787–798. [31] D. Kiss, G. Tevesz, Advanced dynamic window based navigationapproach using model predictive control, Proc. 2012 17thInt. Conf. on Methods & Models in Automation & Robotics(MMAR), IEEE, 2012, 148–153. [32] Y. Hou, L. Liu, Q. Wei, X. Xu, C. Chen, A novel DDPGmethod with prioritized experience replay, Proc. 2017 IEEEInt. Conf. on Systems, Man, and Cybernetics (SMC), IEEE,2017, 316–321. [33] J. Ma, M. Zhang, K. Ma, H. Zhang, G. Geng, A decision-making of autonomous driving method based on DDPGwith pretraining, Proceedings of the Institution of MechanicalEngineers, Part D: Journal of Automobile Engineering, 2024,09544070241227303.
Important Links:
Go Back