QUICK-PICK CNN: A NOVEL ALGORITHM FOR QUICKER DUAL-ARM GRASP LOCALISATION IN A CLUTTERED ENVIRONMENT, 1-9.

A. Josin Hippolitus and R. Senthilnathan

References

  1. [1] A. Hippolitus, R. Josin Senthilnathan, and O. Malla,Simulation of grasp localization inferences for a dual-armcollaborative robot, IOP Conference Series: Materials Scienceand Engineering, 1012(1), 2021.
  2. [2] K. Santhakumar and H. Kasaei, Lifelong 3D object recog-nition and grasp synthesis using dual memory recurrentself-organization networks, Neural Networks 150, 2022,167–180.
  3. [3] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J.A.Ojea, K. Goldberg, Dex-net 2.0: Deep learning to plan robustgrasps with synthetic point clouds and analytic grasp metrics,2017, arXiv:1703.09312.
  4. [4] A. Sahbani, S. El-Khoury, and P. Bidaud, An overview of 3Dobject grasp synthesis algorithms, Robotics and AutonomousSystems, 60(3), 2012, 326–336.
  5. [5] D. Prattichizzo and J.C. Trinkle, Grasping, in Handbook ofRobotics. Berlin: Springer, 2008, 671–700.
  6. [6] A.T. Miller, S. Knoop, H.I. Christensen, and P.K. Allen,Automatic grasp planning using shape primitives, Proceedingof the IEEE International Conference on Robotics andAutomation (ICRA), Taipei, 2003, 1824–1829.
  7. [7] C. Goldfeder, P.K. Allen, C. Lackner, and R. Pelossof, Graspplanning via decomposition trees, Proceeding of the IEEEInternational Conference on Robotics and Automation (ICRA),Rome, 2007, 4679–4684.
  8. [8] R. Detry, E. Baseski, M. Popovic, Y. Touati, N. Kruger, O.Kroemer, J. Peters, and J. Piater, Learning object-specific graspaffordance densities, Proceeding. of the IEEE InternationalConference on Development and Learning (ICDL), Shanghai,2009, 1–7.
  9. [9] L. Porzi, S.R. Bul´o, A. Penate-Sanchez, E. Ricci, and F.Moreno-Noguer, Learning depth-aware deep representationsfor robotic perception, IEEE Robotics and Automation Letters,2(2), 2016, 468–475.
  10. [10] J. Bohg, A. Morales, T. Asfour, and D. Kragic, Data-drivengrasp synthesis—A survey, IEEE Transactions on Robotics30(2), 2013, 289–309.
  11. [11] A. Bicchi and V. Kumar, Robotic grasping and contact: Areview, Proceeding. of the IEEE International Conference onRobotics and Automation (ICRA), San Francisco, CA, 2000,348–353.
  12. [12] Cornell grasping dataset. Accessed: Oct. 1, 2013.http://pr.cs.cornell.edu/grasping/rect data/data.php
  13. [13] A. Depierre, E. Dellandrea, and L. Chen, Jacquard: A large-scale dataset for robotic grasp detection, Proceeding IEEEInternational Conference on Intelligent Robots and Systems,Madrid, 2018, 3511–3516.
  14. [14] I. Lenz, H. Lee, and A. Saxena, Deep learning for detectingrobotic grasps, The International Journal of Robotics Research,34(4–5), 2015, 705–724.
  15. [15] H. Cao, G. Chen, Z. Li, J. Lin, and A. Knoll, Lightweightconvolutional neural network with Gaussian-based grasp-ing representation for robotic grasping detection, 2021,arXiv:2101.10226.
  16. [16] D.S. Maini and A.K. Aggarwal, Camera position estimationusing 2D image dataset, International Journal Innovations inEngineering Technology, 10, 2018, 199–203.
  17. [17] A.K. Aggarwal, GPS-based localization of autonomous vehicles,Autonomous Driving and Advanced Driver-Assistance Systems(ADAS). Boca Raton, FL: CRC Press, 2021, 437–448.
  18. [18] A. Kumar, T. Oishi, S. Ono, A. Banno, and K. Ikeuchi, Globalcoordinate adjustment of 3D survey models in world geodeticsystem under unstable GPS condition, Proceeding 20th ITSWorld CongressITS Japan, Tokyo, 2013, 1–10.
  19. [19] A.K. Aggarwal, Autonomous navigation of intelligent vehiclesusing vision-based method, International Journal ResearchElectronics & Communication Technology, 3(5), 2015, 1–10.
  20. [20] V. Badrinarayanan, A. Kendall, and R. Cipolla, SegNet: Adeep convolutional encoder-decoder architecture for image8segmentation, 2015, arXiv:1511.00561 5.
  21. [21] J. Long, E. Shelhamer, and T. Darrell, Fully convolutionalnetworks for semantic segmentation, Proceedings of the IEEEConference on Computer Vision and Pattern Recognition, 2015,3431–3440.
  22. [22] J. Yang, B. Price, S. Cohen, H. Lee, and M.H. Yang, Objectcontour detection with a fully convolutional encoder-decodernetwork, Proceedings of the IEEE Conference on ComputerVision and Pattern Recognition 2016, 193–202.
  23. [23] J. Mahler, M. Matl, V. Satish, M. Danielczuk, B. DeRose,S. McKinley, and K. Goldberg, Learning ambidextrous robotgrasping policies, Science Robotics, 4(26), 2019, eaau4984.
  24. [24] J. Mahler, M. Matl, X, Liu, A. Li, D. Gealy, and K. Goldberg,Dex-net 3.0: Computing robust vacuum suction grasp targetsin point clouds using a new analytic model and deep learning,Proceeding IEEE International Conference on robotics andautomation (ICRA), 2018, 5620–5627.
  25. [25] J. Qiao, J. Guo, and Y. Li, Vision-based robot indoor-positioning and navigation method research, InternationalJournal of Robotics and Automation, 39(10), 2024, 1–9.
  26. [26] X. Zhu, K. Zhang, and X. Hua, Consistency analysisand suggestions of collision measurement in human–robotcollaboration safety evaluation, International Journal ofRobotics and Automation, 39(10), 2024, 1–13.

Important Links:

Go Back