ROPE-RRT: EFFICIENT FRONT-END PATH PLANNING METHODS IN CLUTTERED MAZE ENVIRONMENTS

Qingmei Dang, Penghui Yang, Huaicheng Yan, Kai Rao, and Xing Qian

References

  1. [1] G.A. Bekey, Springer handbook of robotics, IEEE Robotics &Automation Magazine 15(3), 2008,110–110.
  2. [2] G.V. Nair and K. R. Guruprasad, 2 D-VPC: An efficient cover-age algorithm for multiple autonomous vehicles, InternationalJournal of Control, Automation and Systems, 19(8), 2021,2891–2901.
  3. [3] S. Karaman and E. Frazzoli, Sampling-based algorithms foroptimal motion planning, International Journal of RoboticsResearch, 30(7), 2011, 846–894.
  4. [4] B. Paden, M. ˇC´ap, S. Z. Yong, D. Yershov, and E. Frazzoli, Asurvey of motion planning and control techniques for self-drivingurban vehicles, IEEE Transactions on Intelligent Vehicles,1(1), 2016, 33–55.
  5. [5] P.E. Hart, N.J. Nilsson, and B. Raphael, A formal basis forthe heuristic determination of minimum cost paths, IEEETransactions on Systems Science and Cybernetics, 4(2), 1968,100–107.
  6. [6] X. Wang, Z. Xia, X. Zhou, J. Wei, X. Gu, and H. Yan, Collision-free path planning for arc welding robot based on ida-dealgorithm, International Journal of Robotics and Automation,37(6), 2022,476–485.
  7. [7] D. Xiang, H. Lin, J. Ouyang, and D. Huang, Combinedimproved A and greedy algorithm for path planning ofmulti-objective mobile robot, Scientific Reports, 12(1), 2022,13273.
  8. [8] D. Li, W. Yin, W. E. Wong, M. Jian, and M. Chau,Quality-oriented hybrid path planning based on A and Q-learning for unmanned aerial vehicle, IEEE Access, 10, 2021,7664–7674.
  9. [9] S.M. LaValle and J.J. Kuffner Jr., Randomized kinodynamicplanning, The International Journal of Robotics Research,20(5), 2001, 378–400.
  10. [10] L.E. Kavraki, P. Svestka, J.-C. Latombe, and M.H. Overmars,Probabilistic roadmaps for path planning in high-dimensionalconfiguration spaces, IEEE Transactions on Robotics andAutomation, 12(4), 1996, 566–580.
  11. [11] A. Saccuti, R. Monica, and J. Aleotti, PROTAMP-RRT:A probabilistic integrated task and motion planner basedon RRT, IEEE Robotics and Automation Letters, 8(12),8398–8405, Dec. 2023.
  12. [12] J.D. Gammell, T.D. Barfoot, and S.S. Srinivasa, Informedsampling for asymptotically optimal path planning, IEEETransactions on Robotics, 34(4), 2018, 966–984.
  13. [13] H. An, J. Hu, and P. Lou, Obstacle avoidance path planningbased on improved APF and RRT, Proceeding InternationalConference on Advanced Electronic Materials, Computers andSoftware Engineering (AEMCSE), Changsha, China, 2021,1028–1032.
  14. [14] H.M. Jayaweera and S. Hanoun, A dynamic artificial potentialfield (D-APF) UAV path planning technique for followingground moving targets, IEEE Access, 8, 2020, 192760–192776.
  15. [15] Y. Chen, G. Bai, Y. Zhan, X. Hu, and J. Liu, Path planning andobstacle avoiding of the USV based on improved ACO-APF8hybrid algorithm with adaptive early-warning, IEEE Access,9, 2021,40728–40742.
  16. [16] G.V. Nair and K. R. Guruprasad, Geodesic-VPC: Spatialpartitioning for multi-robot coverage problem, InternationalJournal of Robotics and Automation, 35(3), 2020, 189–198.
  17. [17] G.V. Nair and K. R. Guruprasad, GM-VPC: An algorithmfor multi-robot coverage of known spaces using generalizedVoronoi partition, Robotica, 38(5), 2020, 845–860.
  18. [18] J. Ou, S.H. Hong, G. Song, and Y. Wang, Hybrid pathplanning based on adaptive visibility graph initialization andedge computing for mobile robots, Engineering Applicationsof Artificial Intelligence, 126, 2023, 107110.
  19. [19] J. Wang, M.Q.-H. Meng, and O. Khatib, EB-RRT: Optimalmotion planning for mobile robots, IEEE Transactions onAutomation Science and Engineering, 17(4), 2020, 2063–2073.
  20. [20] Z. Liu, D.Zhu, C. Liu, and X.S., Yang, A novel path planningalgorithm of AUV with model predictive control, InternationalJournal of Robotics and Automation, 37(6), 2022, 460–467.
  21. [21] J. Bruce and M.M. Veloso, Real-time randomized path planningfor robot navigation, in Robot Soccer World Cup. Berlin,Germany:Springer, 2002, 288–295.
  22. [22] M. Zucker, J. Kuffner, and M. Branicky, Multipartite RRTs forrapid replanning in dynamic environments, Proceeding IEEEInternational Conference on Robotics and Automation, 2007,1603–1609.
  23. [23] M. Otte and E. Frazzoli, RRTX: Asymptotically optimal single-query sampling-based motion planning with quick replanning,International Journal of Robotics Research, 35(7), 2016,797–822.
  24. [24] A. Sepehri and A.M. Moghaddam, A motion planning algorithmfor redundant manipulators using rapidly exploring randomizedtrees and artificial potential fields, IEEE Access, 9, 2021,26059–26070.
  25. [25] L. Petit and A.L. Desbiens, RRT-Rope: A deterministicshortening approach for fast near-optimal path planningin large-scale uncluttered 3D environments, InternationalConference on Systems, Man, and Cybernetics (SMC), 2021,1111–1118.

Important Links:

Go Back