CHAIN FAULT IDENTIFICATION AND POWER GRID PLANNING OPTIMISATION IN POWER SYSTEMS CONSIDERING MULTIPLE SCENARIOS, 1-14.

Wenhua Guo

References

  1. [1] S.R.D. Stallon and M.N. Rajkumar, Improving the performanceof grid connected doubly fed induction generator by faultidentification and diagnosis: A kernel PCA SMO technique,International Transactions on Electrical Energy Systems,31(4), 2021, e12844.1–e12844.23.
  2. [2] M.R. Rezaei, S.R. Hadian-Amrei, and M.R. Miveh, Onlineidentification of power transformer and transmission lineparameters using synchronized voltage and current phasors,Electric Power Systems Research, 203, 2022, 107638.1–107638.10.
  3. [3] T. Li, Z. Li, and W. Li, Scenarios analysis on the cross-regionintegrating of renewable power based on a long-period cost-optimization power planning model, Renewable Energy, 156,2020, 851–863.
  4. [4] M.A. Mart´ınez and C. Cruz-Mendoza, A power optimizationmodel for the long-term planning scenarios: Case study ofMexico’s power system decarbonization, The Canadian Journalof Chemical Engineering, 99(4), 2020, 884–897.
  5. [5] F. Mei, J. Zhang, J. Lu, Y. Jiang, Y. Gu, K. Yu, and L. Gan,Stochastic optimal operation model for a distributed integratedenergy system based on multiple-scenario simulations, Energy,219(2), 2020, 119629.1–119629.13.
  6. [6] I. Mitiche, A. Nesbitt, S. Conner, P. Boreham, and G. Morison,1D-CNN based real-time fault detection system for power assetdiagnostics, IET Generation Transmission & Distribution,14(24), 2020, 5766–5773.
  7. [7] S. Chandrasekharan, S.K. Subramaniam, and B. Natarajan,Current indicator based fault detection algorithm for identi-fication of faulty string in solar PV system, IET RenewablePower Generation, 15(7), 2021, 1596–1611.
  8. [8] J. Shi, B. Foggo, and N. Yu, Power system event identificationbased on deep neural network with information loading, IEEETransactions on Power Systems, 36(6), 2021, 5622–5632.
  9. [9] J. Hou, G. Song, P. Chang, R. Xu, and K.S.T. Hussain,Fault identification scheme for hybrid multi-terminal HVDCsystem based on control and protection coordination strategy,International Journal of Electrical Power & Energy Systems,136, 2022, 107591.1–107591.13.
  10. [10] C. Liang, H. Huan, T. Panyu, Y. Dong, Y. Haonan,and G. Noradin, Optimal modeling of combined cooling,heating, and power systems using developed African vultureoptimization: a case study in watersport complex, EnergySources, Part A: Recovery, Utilization, and EnvironmentalEffects, 44(2), 2022, 4296–4317.
  11. [11] P. Verrax, A. Bertinato, M. Kieffer, and B. Raison, Transient-based fault identification algorithm using parametric modelsfor meshed HVDC grids, Electric Power Systems Research,185, 2020, 106387.1–106387.16
  12. [12] B. Gao, C. Peng, D. Kong, X. Wang, C. Li, M. Gao,and G. Noradin, Optimum structure of a combinedwind/photovoltaic/fuel cell-based on amended Dragon flyoptimization algorithm: A case study, Energy Sources, PartA: Recovery, Utilization, and Environmental Effects, 44(3),2022, 7109–7131.
  13. [13] W. Cai, R. Mohammaditab, G. Fathi, K. Wakil, A.G. Ebadi,and N. Ghadimi, Optimal bidding and offering strategies ofcompressed air energy storage: A hybrid robust-stochasticapproach, Renewable Energy, 143, 2019, 1–8.
  14. [14] S. Zuloaga and V. Vittal, Integrated electric power/waterdistribution system modeling and control under extreme megadrought scenarios, IEEE Transactions on Power Systems,PP(99), 2020, 474–484.
  15. [15] B. Sharan and T. Jain, Spectral analysis-based fault diagnosisalgorithm for 3-phase passive rectifiers in renewable energysystems, IET Power Electronics, 13(16), 2020, 3818–3829.
  16. [16] W. Liu, Simulation study on identification technology oftransmission line potential hazards based on corona dischargecharacteristics, International Journal of Computer Applicationsin Technology, (4), 2021, 351–357.
  17. [17] Q. Zhang, W. Ma, G. Li, J. Ding, and M. Xie, Fault diagnosisof power grid based on variational mode decompositionand convolutional neural network, Electric Power SystemsResearch, 208, 2022, 107871.1–107871.9.
  18. [18] X. Wang, L. Zhang, and W.P. Heath, Wind turbine blades faultdetection using system identification-based transmissibilityanalysis, Insight: Non-Destructive Testing and ConditionMonitoring, 64(3), 2022, 164–169.
  19. [19] A. Anand and S. Affijulla, Hilbert-Huang transform basedfault identification and classification technique for AC powertransmission line protection, International Transactions onElectrical Energy Systems, 30(10), 2020, e12558.1–e12558.15.
  20. [20] L. Qi, L. Qiu, and X. Zhou, Fault diagnosis method ofmechanical power system based on image processing technology,International Journal of Advanced Robotic Systems, 17(2),2020, 1729881420914093.1–1729881420914093.13.
  21. [21] Y.M. John, A. Sanusi, I. Yusuf, and U.M. Modibbo,Reliability analysis of multi-hardware-software system withfailure interaction, Journal of Computational and CognitiveEngineering, 2(1), 2023, 38–46.
  22. [22] X. Deng, W. Wang, Y. Liao, Q. Zhang, S. Liu, and C. Wang,Study on online dispatching defensive strategy for power gridconsidering expected circuit breaker fault set, Electric PowerSystems Research, 203, 2022, 107640.1–107640.13.
  23. [23] E.N.V.D.V. Prasad and P.K. Dash, Fault analysis inphotovoltaic generation based DC microgrid using multifractaldetrended fluctuation analysis, International Transactions onElectrical Energy Systems, 31(3), 2020, 12564.1–e12564.20.

Important Links:

Go Back