CONSTRUCTION AND OPERABILITY ANALYSIS OF INTELLIGENT NETWORK PHYSICAL EDUCATION TEACHING SYSTEM

Lin Xiao

References

  1. [1] J. Zhai, X. Wang, S. Zhang, and S. Hou, Tolerance rough fuzzydecision tree, Informationences, 465, 2018, 425–438.
  2. [2] G. Bhuvaneswari and G. Manikandan, A novel machine learningframework for diagnosing the type 2 diabetics using temporalfuzzy ant miner decision tree classifier with temporal weightedgenetic algorithm, Computing, 100(8), 2018, 1–14.
  3. [3] Z. Mirzamomen and M. Reza Kangavari, Evolving fuzzy min-max neural network based decision trees for data streamclassification, Neural Processing Letters, 45(1), 2017, 341–363.
  4. [4] M. Balta and ˙I. ¨Oz¸celik, A 3-stage fuzzy-decision tree modelfor traffic signal optimization in urban city via a SDN basedVANET architecture, Future Generation Computer Systems,104, 2020, 142–158.
  5. [5] P. Nancy, S. Muthurajkumar, S. Ganapathy, S.V.N. SanthoshKumar, M. Selvi, and K. Arputharaj, Intrusion detection usingdynamic feature selection and fuzzy temporal decision tree clas-sification for wireless sensor networks, IET Communications,14(5), 2020, 888–895.
  6. [6] V.I. Syryamkin, S.V. Gorbachev, and M.V. Shikhman. Adaptivefuzzy neural production network with MIMO-structure forthe evaluation of technology efficiency, IOP ConferenceSeries Materials Science and Engineering, 516(1), 2019,012010–012014.
  7. [7] G. Nalinipriya, K.G. Maheswari, and K. Kotteswari, Anenhanced priority scheduling algorithm for multi-serverretrieval cloud system, Journal of Information Science andEngineering, 33(3), 2017, 759–772.
  8. [8] H. Zheng, J. He, Y. Zhang, G. Huang, Z. Zhang, andQ. Liu, A general model for fuzzy decision tree andfuzzy random forest, Computational Intelligence, 35(2), 2019,310–335.
  9. [9] D. Teekaraman, S. Sendhilkumar, and G.S. Mahalakshmi,Semantic provenance based trustworthy users classification onbook-based social network using fuzzy decision tree, Interna-tional Journal of Uncertainty, Fuzziness, and Knowledge-BasedSystems, 28(1), 2020, 47–77.
  10. [10] M. Ghobaei-Arani, R. Khorsand, and M. Ramezanpour, Anautonomous resource provisioning framework for massivelymultiplayer online games in cloud environment, Journalof Network & Computer Applications, 142(SEP), 2019,76–97.
  11. [11] S.P. Das and S. Padhy, A novel hybrid model usingteaching–learning-based optimization and a support vectormachine for commodity futures index forecasting, InternationalJournal of Machine Learning & Cybernetics, 9(1), 2018,97–111.
  12. [12] W.J. Hall, Z. Abigail, S. Allan, M. Schneider, D. Thompson, T.Pham, S.L. Volpe, K. Hindes, A. Sleigh, R.G. McMurray, andHEALTHY Study Group, Process evaluation results from theHEALTHY physical education intervention, Health EducationResearch, 27(2), 2018, 307–324.
  13. [13] C. Roure and D. Pasco, Exploring situational interest sourcesin the french physical education context, European PhysicalEducation Review, 24(1), 2018, 3–20.
  14. [14] G. Escrivaboulley, D. Tessier, N. Ntoumanis, and P. Sarrazin,Need-supportive professional development in elementary schoolphysical education: Effects of a cluster-randomized control trialon teachers’ motivating style and student physical activity,Sport, Exercise, and Performance Psychology, 7(2), 2018,218–234.
  15. [15] T. Sheeba and R. Krishnan, Semantic predictive modelof student dynamic profile using fuzzy concept, ProcediaComputer Science, 132, 2018, 1592–1601.
  16. [16] B.D. Satoto, A. Yasid, M.A. Syakur, and M. Yusuf,Wireless health monitoring with fuzzy decision treefor the community patients of chronic hypertension,Journal of Physics: Conference Series, 1211, 2019,012041–012049.
  17. [17] S. Remya and R. Sasikala, Classification of rubberizedcoir fibres using deep learning-based neural fuzzydecision tree approach, Soft Computing, 23(18), 2019,8471–8485.
  18. [18] M. Ali, A. Talha, and E.M. Berkouk, New M5P modeltree-based control for doubly fed induction generator inwind energy conversion system, Wind Energy, 2020(5), 2020,1–15.
  19. [19] M.M. Ghiasi and S. Zendehboudi, Decision tree-basedmethodology to select a proper approach for wart treatment -ScienceDirect, Computers in Biology & Medicine, 108, 2019,400–409.
  20. [20] N. Maaroof, A. Moreno, A. Valls, M. Jabreel, and P. Romero-Aroca, Multi-class fuzzy-LORE: A method for extracting localand counterfactual explanations using fuzzy decision trees,Electronics, 12(10), 2023, 2215.
  21. [21] P. Ducange, F. Marcelloni, and R. Pecori, Fuzzy hoeffdingdecision tree for data stream classification, InternationalJournal of Computational Intelligence Systems, 14(1), 2021,946–964.
  22. [22] J. Wang, Y. Qian, F. Li, J. Liang, and W. Ding, Fusingfuzzy monotonic decision trees, IEEE Transactions on FuzzySystems, 28(5), 2019, 887–900.11
  23. [23] K. Ramya, Y. Teekaraman, and K.A.R. Kumar, Fuzzy-basedenergy management system with decision tree algorithm forpower security system, International Journal of ComputationalIntelligence Systems, 12(2), 2019, 1173–1178.
  24. [24] Y. Xie, J. Yan, L. Yang, H. Zhang, and C. Wu, Design ontraction braking characteristics test of traction motor for railtransit, Mechatronic Systems and Control, 51(10), 2023.
  25. [25] C.P. Pu, J. Ren, Y.W. Zhai, and Y.H. Zhang, Trajectorytracking of nonholonomic constraint mobile robot based onadrc, Mechatronic Systems and Control, 51(10), 2023.
  26. [26] J. George and G. Mani, HiL implementation of harmony search-based redesigned Pi-like control for Dc servo, MechatronicSystems and Control, 51(1), 2023.

Important Links:

Go Back