DESIGN OF POWER TRACKING MODEL FOR PHOTOVOLTAIC POWER GENERATION BASED ON IMPROVED QUANTUM SWARM ALGORITHM AND CONDUCTANCE INCREMENTAL APPROACH, 1-10.

Xuemei Yang, Wenqing Zhang, and Wenwen Zou

References

  1. [1] I. Dagal, B. Akn, and E. Akboy, Improved Salp swarmalgorithm based on particle swarm optimization for maximumpower point tracking of optimal photovoltaic systems,International Journal of Energy Research, 46(7), 2022,8742–8759.
  2. [2] L. Mao, Q. Chen, and J. Sun, Construction and optimization offuzzy rule-based classifier with a swarm intelligent algorithm,Mathematical Problems in Engineering, 2020(Pt.13), 2020,9319364.1–9319364.12.
  3. [3] P. Manoharan, U. Subramaniam, S.B. Thanikanti, P.Sanjeevikumer, B.H. Jens, M. Massimo, and R. Sowmya,Improved perturb and observation MPPT technique for solarphotovoltaic power generation systems, IEEE Systems Journal,15(2), 2020, 3024–3035.
  4. [4] A.I.M. Ali and H.R.A. Mohamed, Improved P&O MPPTalgorithm with efficient open-circuit voltage estimation for two-stage grid-integrated PV system under realistic solar radiation,International Journal of Electrical Power and Energy Systems,137, 2022, 107805.1–107805.12.
  5. [5] L. Xu, R. Cheng, and J. Yang, A new MPPT technique for fastand efficient tracking under fast varying solar irradiation andload resistance, International Journal of Photoenergy, 2020,2020, 6535372.1–6535372.18.
  6. [6] M.A.B. Siddique, A. Asad, R.M. Asif, A.U. Rahman, andI. Ullah, Implementation of incremental conductance MPPTalgorithm with integral regulator by using boost converter ingrid-connected PV array, IETE Journal of Research, 67(1),2021, 1920481.1–1920481.14.
  7. [7] J. Mishra, S. Das, D. Kumar, and M. Pattnaik, A novel auto-tuned adaptive frequency and adaptive step: Ize incrementalconductance MPPT algorithm for photovoltaic system,International Transactions on Electrical Energy Systems,31(10), 2021, e12813.1–e12813.14.
  8. [8] Y. Ouberri, H. Yatimi, and E. Aroudam, Design of a robustsliding mode controller for MPPT based on automation PLCfor PV applications, International Transactions on ElectricalEnergy Systems, 30(4), 2020, e12296.1–e12296.19.
  9. [9] A.F. Mirza, M. Mansoor, K. Zhan, and Q. Ling, High-efficiencyswarm intelligent maximum power point tracking controltechniques for varying temperature and irradiance, Energy,228, 2021, 120602.1–102602.27.
  10. [10] G. Hou, Y. Ke, and C. Huang, A flexible constant powergeneration scheme for photovoltaic system by error-based activedisturbance rejection control and perturb & observe, Energy,237, 2021, 121646.1–121646.13.
  11. [11] S. Motahhir, A. El Hammoumi, and A. El Ghzizal, Themost used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm, Journal of CleanerProduction, 246, 2020, 118983.1–118983.17.
  12. [12] R. Mei and J. Zhang, MPPT algorithm of particle swarmoptimization and fuzzy variable step incremental conductancemethod based on z-source inverter, Taiyangneng Xuebao/ActaEnergiae Solaris Sinica, 41(1), 2020, 137–145.
  13. [13] J. Ahmed, Z. Salam, M. Kermadi, H. Afrouzi, and R. Ashique,A skipping adaptive P&O MPPT for fast and efficient trackingunder partial shading in PV arrays, International Transactionson Electrical Energy Systems, 11(5), 2021, e13017.1–e13017.24.
  14. [14] F.U. Khan, M.M. Gulzar, D. Sibtain, H.M. Usman, and A.Hayat, Variable step size fractional incremental conductance forMPPT under changing atmospheric conditions, InternationalJournal of Numerical Modelling Electronic Networks Devicesand Fields, 33(2), 2020, e2765.1–e2765.18.
  15. [15] R. Celikel and A. Gundogdu, System identification-basedMPPT algorithm for PV systems under variable atmosphereconditions using current sensorless approach, InternationalTransactions on Electrical Energy Systems, 30(8), 2020, 1–21.
  16. [16] A. Chellakhi, S.E. Beid, and Y. Abouelmahjoub, An improvedmaximum power point approach for temperature variation inpv system applications, International Journal of Photoenergy,2021, 2021, 973204.1–973204.21.
  17. [17] S. Guo, R. Abbassi, H. Jerbi, A. Rezvani, and K. Suzuki,Efficient maximum power point tracking for a photovoltaicusing hybrid shuffled frog-leaping and pattern search algorithmunder changing environmental conditions, Journal of CleanerProduction, 297, 2021, 126573.1–126573.20.
  18. [18] L. Xu, R. Cheng, and J. Yang, A new MPPT technique for fastand efficient tracking under fast varying solar irradiation andload resistance, International Journal of Photoenergy, 2020,2020, 6535372.1–6535372.18.
  19. [19] M. Mao, L. Zhang, L. Yang, B. Chong, H. Huang, and L.Zhou, MPPT using modified Salp swarm algorithm for multiplebidirectional PV-uk converter system under partial shadingand module mismatching, Solar Energy, 209(1), 2020, 334–349.
  20. [20] P. Dey and D.K. Jana, Evaluation of the convincing abilitythrough presentation skills of pre-service management wizardsusing AI via T2 linguistic fuzzy logic, Journal of Computationaland Cognitive Engineering, 2(2), 2022, 133–142.
  21. [21] P.A. Ejegwa and J.M. Agbetayo, Similarity-distance decision-making technique and its applications via intuitionistic fuzzypairs, Journal of Computational and Cognitive Engineering,2(1), 2023, 68–74.

Important Links:

Go Back