MECHANICAL BEARING FAULT DIAGNOSIS BASED ON DUAL-CHANNEL FEATURE FUSION ALGORITHM

Wang Hui

References

  1. [1] C. Che, H. Wang, X. Ni, and Q. Fu, Intelligent faultdiagnosis method of rolling bearing based on stacked denoisingautoencoder and convolutional neural network, IndustrialLubrication and Tribology, 72(7), 2020, 947–953.
  2. [2] L. Li, Z. Xia, H. Han, G. He, F. Roll, and X. Feng, Infraredand visible image fusion using a shallow CNN and structuralsimilarity constraint, IET Image Processing, 14(3), 2020,3562–3571.
  3. [3] X. Zhang, S. Liu, L. Li, J. Lei, and G. Chang, Multiscaleholospectrum convolutional neural network-based fault diag-nosis of rolling bearings with variable operating conditions,Measurement Science and Technology, 32(10), 2021, 101–112.
  4. [4] Z. Xu, C. Li, and Y. Yang, Fault diagnosis of rolling bearingsusing an improved multi-scale convolutional neural networkwith feature attention mechanism, ISA Transactions, (110),2021, 379–393.
  5. [5] P. Zheng, H. He, Y. Gao, P.W. Tang, H.L. Wang, J. Peng,L. Wang, C. Su, and S. Ding, Speeding up the topographyimaging of atomic force microscopy by convolutional neuralnetwork, Analytical Chemistry, 94(12), 2022, 5041–5047.
  6. [6] R. Gong and Z. Tang, Further investigation of convolutionalneural networks applied in computational electromagnetismunder physics-informed consideration, IEET Electric PowerApplications, 16(6), 2022, 653–674.
  7. [7] E. Irmak, COVID-19 disease severity assessment using CNNmodel, IET Image Processing, 15(8), 2021, 1814–1824.
  8. [8] S. Dong, Y. Li, P. Zhu, X. Pei, X. Pan, X. Xu, L. Liu, B.Xing, and X. Hu, Rolling bearing performance degradationassessment based on singular value decomposition- slidingwindow linear regression and improved deep learning networkin noisy environment, Measurement Science and Technology,33(4), 2022, 111–129.
  9. [9] B. Zhao, X. Zhang, L. Hai, and Z.B. Yang, Intelligentfault diagnosis of rolling bearings based on normalized CNNconsidering data imbalance and variable working conditions,Knowledge-Based Systems, 199(8), 2020, 321–336.
  10. [10] Q. Xu, B. Zhu, H. Huo, Z. Meng, J. Li, F.J. Fan, L. Cao,Fault diagnosis of rolling bearing based on online transferconvolutional neural network, Applied Acoustics, 192(8), 2022,411–420.
  11. [11] H. Habbouche, Y. Amirat, T. Benkedjouh, and M. Benbouzid,Bearing fault event-triggered diagnosis using a variationalmode decomposition-based machine learning approach, IEEETransactions on Energy Conversion, 37(1), 2022, 466–474.
  12. [12] X. Pang, X. Xue, and X. Jin, Experimental study on wearlife of journal bearings in the rotor system subjected totorque, Transactions of The Canadian Society for MechanicalEngineering, 44(2), 2019, 272–278.
  13. [13] X. Li, H. Zhao, L. Yu, H. Chen, and W. Deng, Feature extractionusing parameterized multisynchrosqueezing transform., IEEESensors Journal, 22(14), 2022, 14263–14272.
  14. [14] H. Zhao, J. Liu, H. Chen, J. Chen, Y. Li, J. Xu, and W. Deng,Intelligent diagnosis using continuous wavelet transform andgauss convolutional deep belief network, IEEE Transactionson Reliability, 72(2), 2023, 692–702.
  15. [15] H. Zhao, H. Liu, Y. Jin, X.J. Dang, and W. Deng, Featureextraction for data-driven remaining useful life prediction ofrolling bearings, IEEE Transactions on Instrumentation andMeasurement, 70, 2021, 1–10.
  16. [16] H. Zhao, Y. Wu, and W. Deng, An interpretable dynamicinference system based on fuzzy broad learning, IEEETransactions on Instrumentation and Measurement, 72, 2023,2527412.
  17. [17] X. Li, H. Zhao, and W. Deng, BFOD: Blockchain-based privacyprotection and security sharing scheme of flight operation data,IEEE Internet of Things Journal, 2023, 1.
  18. [18] Q. Zhang, J. Xiao, C. Tian, W. Lin, and S. Zhang, Arobust deformed convolutional neural network (CNN) for imagedenoising, CAAI Transactions on Intelligence Technology, 8(2),2023, 331–342.
  19. [19] Y. Guo, J. Mao, and M. Zhao, Rolling bearing fault diagnosismethod based on attention CNN and BiLSTM network, NeuralProcessing Letters, 55(3), 2023, 3377–3410.
  20. [20] Y. Zhang, J. Wang, F. Zhang, S. Lv, L. Zhang, M. Jiang,Q. Sui, Intelligent fault diagnosis of rolling bearing using theensemble self-taught learning convolutional auto-encoders, IETScience, Measurement & Technology, 16(2), 2022, 130–147.
  21. [21] J. Zou and H. Zhang, New key point detection technologyunder real-time eye tracking, Mechatronic Systems and Control,47(2), 2019, 71–76.
  22. [22] V.T. Minh, M. Tamre, A. Safonov, P. Kovalenko, and I.Monakhov, Design and implementation of a mechatronicelbow orthosis, Mechatronic Systems and Control, 48(4), 2020,231–238.
  23. [23] S. Xu, E.S.L. Ho, and H.P.H. Shum, A hybrid metaheuristicnavigation algorithm for robot path rolling planning in anunknown environment, Mechatronic Systems and Control,47(4), 2019, 216–224.
  24. [24] S. Li, X. You, and S. Liu, Multiple ant colony optimizationusing both novel LSTM network and adaptive Tanimotocommunication strategy, Applied Intelligence, 51(8), 2021,5644–5664.
  25. [25] Y. Guo, Z. Mustafaoglu, and D. Koundal, Spam detection usingbidirectional transformers and machine learning classifier algo-rithms, Journal of Computational and Cognitive Engineering,2(1), 2022, 5–9.

Important Links:

Go Back