COMPARISON OF THE PERFORMANCE OF DIFFERENT SOLAR RECEIVERS BASED ON THEIR GEOMETRY AND DIMENSIONS, 1-8.

Samane Karimi, Amir Torabi, Behzad Ghasemi, and Afrasiab Raisi

References

  1. [1] A.B. Meinel and M.P. Meinel, Applied solar energy: Anintroduction, NASA STI/Recon Technical Report A, 77, 1977,33445.
  2. [2] S.A. Kalogirou, Solar energy engineering: processes and systems(Cambridge, MA: Academic Press, 2013 Oct 25).
  3. [3] W. Wang, A. Malmquist, and B. Laumert, Comparison ofpotential control strategies for an impinging receiver based dish-Brayton system when the solar irradiation exceeds its designvalue, Energy Conversion and Management, 169, 2018, 1–2.
  4. [4] Y. Wang, X. Dong, J. Wei, and H. Jin, Numerical simulation ofthe heat flux distribution in a solar cavity receiver, Frontiers ofEnergy and Power Engineering in China, 4(4), 2010, 571–576.
  5. [5] L. Weinstein, D. Kraemer, K. McEnaney, and G. Chen,Optical cavity for improved performance of solar receivers insolar-thermal systems, Solar Energy, 108, 2014, 69–79.
  6. [6] A. Fleming, C. Folsom, H. Ban, and Z. Ma, A general method toanalyze the thermal performance of multi-cavity concentratingsolar power receivers, Solar Energy, 150, 2017, 608–618.
  7. [7] K. Wang, Y.L. He, P. Li, M.J. Li, and W.Q. Tao, Multi-objective optimization of the solar absorptivity distributioninside a cavity solar receiver for solar power towers, Solarenergy, 158, 2017, 247–258.
  8. [8] S. Pavlovic, R. Loni, E. Bellos, D. Vasiljevi´c, G. Najafi, andA. Kasaeian, Comparative study of spiral and conical cavityreceivers for a solar dish collector, Energy Conversion andManagement, 178, 2018, 111–122.
  9. [9] J. Garrido, L. Aichmayer, A. Abou-Taouk, and B. Laumert,Experimental and numerical performance analyses of Dish-Stirling cavity receivers: Radiative property study and design,Energy, 169, 2019, 478–488.
  10. [10] A. Kasaeian, A. Kouravand, M.A. Rad, S. Maniee, and F.Pourfayaz, Cavity receivers in solar dish collectors: A geometricoverview, Renewable Energy, 169, 2021, 53–79.
  11. [11] C. Ophoff, M. Abuseada, N. Ozalp, and D. Moens, Systematicapproach for design optimization of a 3 kW solar cavity receivervia multiphysics analysis, Solar Energy, 206, 2020, 420–435.7
  12. [12] R. Alvarado-Ju´arez, M. Montiel-Gonz´alez, H.I. Villafan-Vidales, C.A. Estrada, and J. Flores-Navarrete, Experimentaland numerical study of conjugate heat transfer in an opensquare-cavity solar receiver, International Journal of ThermalSciences, 156, 2020, 106458.
  13. [13] E. Bellos, E. Bousi, C. Tzivanidis, and S. Pavlovic, Optical andthermal analysis of different cavity receiver designs for solardish concentrators, Energy Conversion and Management: X,2, 2019, 100013.
  14. [14] R. Loni, E.A. Asli-Areh, B. Ghobadian, A.B. Kasaeian, S.Gorjian, G. Najafi, and E. Bellos, Research and review study ofsolar dish concentrators with different nanofluids and differentshapes of cavity receiver: Experimental tests, RenewableEnergy, 145, 2020, 783–804.
  15. [15] A.M. Daabo, S. Mahmoud, and R.K. Al-Dadah, The effect ofreceiver geometry on the optical performance of a small-scalesolar cavity receiver for parabolic dish applications, Energy,114, 2016, 513–525.
  16. [16] R. Alvarado-Ju´arez, M. Montiel-Gonz´alez, H.I. Villafan-Vidales, C.A. Estrada, and J. Flores-Navarrete, Experimentaland numerical study of conjugate heat transfer in an opensquare-cavity solar receiver, International Journal of ThermalSciences, 156, 2020, 106458.
  17. [17] C. Zou, Y. Zhang, H. Feng, Q. Falcoz, P. Neveu, W. Gao, and C.Zhang, Effects of geometric parameters on thermal performancefor a cylindrical solar receiver using a 3D numerical model,Energy Conversion and Management, 149, 2017, 293–302.
  18. [18] T. Venkatachalam and M. Cheralathan, Effect of aspect ratioon thermal performance of cavity receiver for solar parabolicdish concentrator: An experimental study, Renewable Energy,139, 2019, 573–581.
  19. [19] M.H. Lin, J.H. Lin, M. El Haj Assad, R. Alayi, and S.R.Seyednouri, Optimal location and sizing of wind turbinesand photovoltaic cells in the grid for load supply usingimproved genetic algorithm, Journal of Renewable Energy andEnvironment, 10(2), 2022, 9–18.
  20. [20] A. Shaikh, P.H. Shaikh, L. Kumar, N.H. Mirjat, Z.A. Memon,M.E.H. Assad, and R. Alayi, Design and modeling of agrid-connected PV–wt hybrid microgrid system using netmetering facility, Iranian Journal of Science and Technology,Transactions of Electrical Engineering, 46(4), 2022, 1189–1205.
  21. [21] O. Prakash, A. Ahmad, A. Kumar, R. Chatterjee, S. Sharma,R. Alayi, and H. Monfared, The compressive study of energysecurity prospects in India through solar power, InternationalJournal of Low-Carbon Technologies, 17, 2022, 962–979.
  22. [22] M. Jahangiri, F. Raeiszadeh, R. Alayi, A. Najafi, and A.Tahmasebi, Development of rural tourism in Iran using PV-based system: Finding the best economic configuration, Journalof Renewable Energy and Environment, 9(4), 2022, 1–9.
  23. [23] A. Aldawoud, A. Aldawoud, Y. Aryanfar, M.E.H. Assad, S.Sharma, and R. Alayi, Reducing PV soiling and condensationusing hydrophobic coating with brush and controllable curtains,International Journal of Low-Carbon Technologies, 17, 2022,919–930.
  24. [24] L. Heller, Literature review on heat transfer fluids and thermalenergy storage systems in CSP plants, STERG Report, 2013May 31.

Important Links:

Go Back