Heng Xiang


  1. [1] X.M. Zhao, W.B. Wu, and G.X. Zhu, Variable massestimation and disturbance compensation for permanentmagnet linear servo system based on seventh-order EKF,Electric Machines and Control, 24(1), 2020, 79–85. DOI:10.15938/j.emc.2020.01.010.
  2. [2] H.Y. Jin, X.M. Zhao, and T.H. Wang, Adaptive backsteppingcomplementary sliding mode control of permanent magnetlinear synchronous motor based on disturbance observer,Chinese Journal of Electrical Engineering, 42(6), 2022,2356–2365. DOI: 10.13334/j.0258-8013.pcsee.210644.
  3. [3] J.C. Huang, P. Ma, and F.Z. Gao, Research on positionservo system based on fractional order active disturbancerejection control, Electric Drive, 52(12), 2020, 59–63+110.DOI: 10.1109/ACCESS.2020.2997407.
  4. [4] Z.D. Wang, L. Han, and S.D. Ding, Servo control system of per-manent magnet synchronous motor based on active disturbancerejection control, Computer and Digital Engineering, 50(1),2022, 61–65+84. DOI: 10.3969/j.issn.1672-9722.2022.01.012.
  5. [5] S. Zhao, H.W. Shi, X.S. Liu, P.C. Li, and Y. Zuo,Hydraulic servo flow control of third-order linear activedisturbance rejection controller, Chinese Hydraulics and Pneu-matics, 45(5), 2021, 149–156. DOI: 10.11832/j.issn.1000-4858.2021.05.021.138
  6. [6] L.X. Wang, D.X. Zhao, F.C. Liu, Q. Liu, and Z.X. Zhang,Active disturbance rejection control of electro-hydraulicposition servo system based on dead zone compensation,China Mechanical Engineering, 32(12), 2020, 1432–1442. DOI:10.3969/j.issn.1004-132X.2021.12.006.
  7. [7] W. Huang, Research on active disturbance rejection control ofhydraulic valve-controlled cylinder based on electro-hydraulicservo system, Hydraulics Pneumatics and Seals, 40(9), 2020,13–16+20. DOI: 10.3969/j.issn.1008-0813.2020.09.004.
  8. [8] L. Zhao and J.L. Bai, Active disturbance rejection control ofcurtain wall louver servo motor based on differential evolution,Computer Measurement and Control, 29(11), 2021, 88–94.DOI: 10.16526/j.cnki.11-4762/tp.2021.11.016.
  9. [9] H.R. Patel and V.A. Shah, A metaheuristic approachfor interval type-2 fuzzy fractional order fault-tolerantcontroller for a class of uncertain nonlinear system,Automatika: ˇCasopis Za Automatiku, Mjerenje, Elektroniku,Raˇcunarstvo I Komunikacije, 63(4), 2022, 656–675. DOI:10.1080/00051144.2022.2061818.
  10. [10] H.R. Patel and V.A. Shah, Stable fuzzy controllers via LMIapproach for non-linear systems described by type-2 T–S fuzzymodel, International Journal of Intelligent Computing andCybernetics, 14(3), 2022, 509–531. DOI: 10.1108/IJICC-02-2021-0024.
  11. [11] H.R. Patel, Fuzzy-based metaheuristic algorithm for optimiza-tion of fuzzy controller: fault-tolerant control application, Inter-national Journal of Intelligent Computing and Cybernetics,15(4), 2022, 599–624. DOI: 10.1108/IJICC-09-2021-0204.
  12. [12] J. Li, K.M. Xiao, and L.K. Zhu, Active disturbance rejectioncontrol of MDF electro-hydraulic servo system based onimproved fractional integral sliding mode, Forest ProductIndustry, 59(4), 2022, 34–40. DOI: 10.19531/j.issn1001-5299.202204008.
  13. [13] J.B. Lu, Y.L. Hou, C.L. Wang, and Y.K. He, Compound activedisturbance rejection control for PMSM position servo system,Automation and Instrumentation, 18(7), 2020, 17–20.
  14. [14] Y.P. Wang, J. Zhang, and X. Zhang, RBF neural networksliding mode control strategy for position servo system ofpermanent magnet synchronous motor, Journal of HubeiUniversity (Natural Science), 43(4), 2021, 429–436. DOI:10.3969/j.issn.1000-2375.2021.04.011.
  15. [15] S. Zhao, H.W. Shi, X.S. Liu, P.C. Li, and Y. Zuo, Hydraulicservo flow control of third-order linear active disturbancerejection controller, Chinese Hydraulics and Pneumatics, 45(5),2021, 149–156. DOI: 10.11832/j.issn.1000-4858.2021.05.021.
  16. [16] Y.M. Fang, S.C. Ren, Z.J. Wang, and X.H. Jiao, Adaptivefuzzy backstepping control for speed of permanent magnetsynchronous motor, Electric Machines and Control, (6), 2011,97–102. DOI: 1007-449X/CN:23-1 408/TM.
  17. [17] H.Y. Jin, X.M. Zhao, and T.H. Wang, Adaptive backwardcomplementary sliding mode control of permanent magnetlinear synchronous motor based on disturbance observer,Proceedings of the CSEE, 42(6), 2022, 2356–2365. DOI:10.13334/j.0258-8013.pcsee.210644.
  18. [18] Y.P. Lan and J.L. Nie, Active disturbance rejectioncontrol of controllable excitation linear maglev synchronousmotor based on genetic algorithm, Manufacturing Technol-ogy and Machine Tool, 16(3), 2020, 155–160+183. DOI:CNKI:SUN:ZJYC.0.2020-03-036.
  19. [19] F. Arenas-Rosales, F. Martell-Chavez, I.Y. Sanchez-Chavez,Discrete time dc motor model for load torque estimation forPID-IMC speed control, Mechatronic Systems and Control,50(2), 2022, 102–108. DOI: 10.2316/J.2022.201-0265
  20. [20] P. Zhan and H.F. Xiao, Robust control of second-orderactive disturbance rejection speed regulation system of per-manent magnet synchronous motor, Mechanical and ElectricalInformation, 19(24), 2021, 6–7+10. DOI: 10.3969/j.issn.1671-0797.2021.24.003.
  21. [21] J. Wu, J. Zhang, B. Nie, Y. Liu, and X. He, Adaptivecontrol of PMSM servo system for steering-by-wire sys-tem with disturbances observation, IEEE Transactions onTransportation Electrification, 8(2), 2021, 2015–2028. DOI:10.1109/TTE.2021.3128429.
  22. [22] S. Fang, Y. Wang, W. Wang, Y. Chen, and Y. Chen,Design of permanent magnet synchronous motor servo systembased on improved particle swarm optimization, IEEETransactions on Power Electronics, 37(5), 2021, 5833–5846.DOI: 10.1109/TPEL.2021.3128188.
  23. [23] P. Su, W. Hua, Z. Wu, Z. Chen, G. Zhang, M. Cheng,Comprehensive comparison of rotor permanent magnet andstator permanent magnet flux-switching machines, IEEETransactions on Industrial Electronics, 66(8), 2019, 5862–5871.DOI: 10.1109/TIE.2018.2875636.
  24. [24] S. Ghosh, H. Goud, P. Swarnkar, and D.M. Deshpande, Designof an optimized adaptive PID controller for induction motordrive, Mechatronic Systems and Control, 49(3), 2021, 190–197.DOI: 10.2316/J.2021.201-0197.
  25. [25] P. Chen and Y. Luo, Analytical fractional-order PID controllerdesign with bode’s ideal cutoff filter for PMSM speed servosystem, IEEE Transactions on Industrial Electronics, 70(2),2022, 1783–1793. DOI: 10.1109/TIE.2022.3158009.
  26. [26] S.C. Chen, H.J. Li, C.W. Huang, and H. Xiong, Slidingmode control with a new-style disturbance observer forlow-Speed permanent magnet synchronous motor, AdvancedMaterials Research, 614–615, 2012, 1195–1200. DOI:10.4028/
  27. [27] S. Foitzik and M. Doppelbauer, Fault tolerant control of athree-phase PMSM by limiting the heat of an inter-turn fault,IET Electric Power Applications, 16(2), 2022, 158–168. DOI:10.1049/elp2.12142.
  28. [28] S. Yaqubi, M. Homaeinezhad, and M.R. Homaeinezhad,Adaptive fuzzy-wavelet neural networks-based real-time modelgeneration for increasing tracking precision of multivariableservo actuator, Mechatronic Systems and Control, 50(1), 2022,49–54. DOI: 10.2316/J.2022.201-0131.
  29. [29] J. Tavoosi, A novel recurrent type-2 fuzzy neural networkfor stepper motor control, Mechatronic Systems and Control,49(1), 2021, 30–35. DOI: 10.2316/J.2021.201-0097.

Important Links:

Go Back