A NEW HYBRID WHALE PARTICLE SWARM OPTIMISATION ALGORITHM FOR ROBOT TRAJECTORY PLANNING AND TRACKING CONTROL, 48-57.

Huakai Zhang

References

  1. [1] A.O. Ghrieb, Y. Kourd, K. Messaoudi, D.M. Mouss, andT. Bakir, Hardware implementation using XSG of new faultdetection method applied to robot manipulator, MechatronicSystems and Control, 48(1), 2020, 1–9.
  2. [2] P. Hofmann, C. Samp, and N. Urbach, Robotic processautomation, Electronic Markets, 30(1), 2020, 99–106.
  3. [3] S. Koceski and G. Vladimirov, Inverse kinematics solution ofa robot arm based on adaptive neuro fuzzy interface system,International Journal of Computer Applications, 178(39),2019, 10–14.
  4. [4] J. J. Sweafford and F. Fahimi, Model-free online reinforcementlearning of a robotic manipulator, Mechatronic Systems andControl, 47(3), 2019, 136–143.
  5. [5] Q. Meng, X. Lai, Z. Yan, C. Y. Su, and M. Wu, Motion planningand adaptive neural tracking control of an uncertain two-linkrigid–flexible manipulator with vibration amplitude constraint,IEEE Transactions on Neural Networks and Learning Systems,33(8), 2021, 3814–3828.
  6. [6] C. E. Luis, M. Vukosavljev, and A P. Schoellig, Online trajectorygeneration with distributed model predictive control for multi-robot motion planning, IEEE Robotics and Automation Letters,5(2), 2020, 604–611.
  7. [7] B. Riviere, W. H¨onig, Y. Yue, and S.J. Chung, Glas: Global-to-local safe autonomy synthesis for multi-robot motion planningwith end-to-end learning, IEEE Robotics and AutomationLetters, 5(3), 2020, 4249–4256.56
  8. [8] P.N. Srinivasu, A.K. Bhoi, R.H. Jhaveri, G.T. Reddy, and M.Bilal, Probabilistic deep Q network for real-time path planningin censorious robotic procedures using force sensors, Journalof Real-Time Image Processing, 18(5), 2021, 1773–1785.
  9. [9] X. Luo, S. Li, S. Liu, and G. Liu, An optimal trajectory planningmethod for path tracking of industrial robots, Robotica, 37(3),2019, 502–520.
  10. [10] J. Zan, Research on robot path perception and optimizationtechnology based on whale optimization algorithm, Journal ofComputational and Cognitive Engineering, 1(4), 2022, 201–208.
  11. [11] D. Zhang, C. Sun, X. Hu, and J. Zhang, Cross-couplingsynchronous control of double brushless dc motor based onvariable domain fuzzy PID, Mechatronic Systems and Control,49(1), 2021, 2310–2316.
  12. [12] P. Gaidhane, A. Kumar, and R. Raj, Tuning of interval type-2fuzzy precompensated PID controller: GWO-ABC algorithmbased constrained optimization approach//recent trends ontype-2 fuzzy logic systems: theory, methodology and applications,(Cham: Springer International Publishing, 2023), 75–96.
  13. [13] G. Bhandari, R. Raj, P. M. Pathak, and J.M. Yang, Robustcontrol of a planar snake robot based on interval type-2 Takagi–Sugeno fuzzy control using genetic algorithm, EngineeringApplications of Artificial Intelligence, 116, 2022, 105437.
  14. [14] A.G. Gad, Particle swarm optimization algorithm and itsapplications: A systematic review, Archives of ComputationalMethods in Engineering, 29(5), 2022, 2531–2561.
  15. [15] X. Yin, L. Pan, and S. Cai, Robust adaptive fuzzy sliding modetrajectory tracking control for serial robotic manipulators,Robotics and Computer-Integrated Manufacturing, 72, 2021,101884.
  16. [16] Z. Ye, D. Zhang, J. Cheng, and Z.-G. Wu, Event-triggering andquantized sliding mode control of UMV systems under DoSattack, IEEE Transactions on Vehicular Technology, 71(8),2022, 8199–8211.
  17. [17] M. Van, X.P. Do, and M. Mavrovouniotis, Self-tuning fuzzyPID-nonsingular fast terminal sliding mode control for robustfault tolerant control of robot manipulators, ISA Transactions,96, 2020, 60–68.
  18. [18] V T. Minh, M. Tamre, A. Safonov, P. Kovalenko, and I.Monakhov, Design and implementation of a mechatronicelbow orthosis, Mechatronic Systems and Control, 48(4), 2020,231–238.

Important Links:

Go Back