Ali Jebelli, Alireza Najafiyanfar, Arezoo Mahabadi, and Mustapha C. E. Yagoub


  1. [1] S. Islam, X.P. Liu, and A.E. Saddik, Adaptive sliding modecontrol of unmanned four rotor flying vehicle, InternationalJournal of Robotics and Automation, 30, 2015, 140–148.
  2. [2] X. Fu and H. Guo, Robust adaptive fault-tolerant controlbased on GBF-CMAC neural network for low-altitude UAV,International Journal of Robotics and Automation, 38, 2023,267–276.
  3. [3] R. Miranda-Colorado and L.T. Aguilar, Robust PID control ofquadrotors with power reduction analysis, ISA Transactions,98, 2020, 47–62.
  4. [4] A. Jebelli and M.C.E. Yagoub, Fuzzy logic PID-based controldesign for a small underwater robot with minimum energyconsumption, International Journal of Mechanical Engineeringand Robotics Research, 5(3), 2016, 186–190.
  5. [5] R. Fessi and S. Bouall`egue, LQG controller design fora quadrotor UAV based on particle swarm optimisation,International Journal of Automation and Control, 13, 2019,569–594.
  6. [6] P. Lu and E.J. Van Kampen, Active fault-tolerant control forquadrotors subjected to a complete rotor failure, Proc. 2015IEEE/RSJ International Conference on Intelligent Robots andSystems, Hamburg, 2015, 4698–4703.
  7. [7] G. Arleo, F. Caccavale, G. Muscio, and F. Pierri, Control ofquadrotor aerial vehicles equipped with a robotic arm, Proc.21St Mediterranean Conference On Control And Automation,2013, Platanias, 1174–1180.
  8. [8] A. Jebelli, M.C.E. Yagoub, and B.S. Dhillon, Feedbacklinearization approach to fault tolerance for a micro quadrotor,Proc. IEEE International Conference on Industrial Technology,Lyon, 2018, 165–168.
  9. [9] Z. Hou, P. Lu, and Z. Tu, Nonsingular terminal sliding modecontrol for a quadrotor UAV with a total rotor failure, AerospaceScience and Technology, 98, 2020, 105716.
  10. [10] Y.A.A.Y. Aoki, Y. Asano, A. Honda, N. Motooka, and T.Ohtsuka, Nonlinear model predictive control of position andattitude in a hexacopter with three failed rotors, IFAC-PapersOnLine, 51, 2018, 228–233.
  11. [11] F. Nan, S. Sun, P. Foehn, and D. Scaramuzza, NonlinearMPC for quadrotor fault-tolerant control, IEEE Robotics andAutomation Letters, 7, 2022, 5047–5054.
  12. [12] R.C. Avram, X. Zhang, and J. Muse, Nonlinear adaptivefault-tolerant quadrotor altitude and attitude tracking withmultiple actuator faults, IEEE Transactions on ControlSystems Technology, 26, 2017, 701–707.
  13. [13] D. Asadi, K. Ahmadi, and S.Y. Nabavi, Fault-toleranttrajectory tracking control of a quadcopter in presence of amotor fault, International Journal of Aeronautical and SpaceSciences, 23, 2022, 129–142.
  14. [14] C.D. Pose, J.I. Giribet, and A.S. Ghersin, Hexacopter faulttolerant actuator allocation analysis for optimal thrust, Proc.International Conference on Unmanned Aircraft Systems,Miami, FL, 2017, 663–671.
  15. [15] A. Jebelli, H. Chaoui, A. Mahabadi, and B.S. Dhillon, Trackingand mapping system for an underwater vehicle in real positionusing sonar system, International Journal of Robotics andAutomation, 37(1), 2022, 124–134.
  16. [16] F. Fei, Z. Tu, D. Xu, and X. Deng, Learn-to-recover: Retrofittinguavs with reinforcement learning-assisted flight control undercyber-physical attacks, Proc. IEEE International Conferenceon Robotics and Automation, Paris, 2020, 7358–7364.
  17. [17] A. Jebelli, A. Mahabadi, A. Nayak, and R. Ahmad, Increasingthe operating depth of a Teflon underwater vehicle using amagnetic field Ocean Engineering, 250, 2022, 111078.
  18. [18] A. Freddi, A. Lanzon, and S. Longhi, A feedback linearizationapproach to fault tolerance in quadrotor vehicles, IFACProceedings Volumes, 44, 2011, 5413–5418.11
  19. [19] J. Ye, Adaptive control of nonlinear PID-based analog neuralnetworks for a nonholonomic mobile robot, Neurocomputing,71, 2008, 1561–1565.
  20. [20] H. Razmi and S. Afshinfar, Neural network-based adaptivesliding mode control design for position and attitude controlof a quadrotor UAV, Aerospace Science and Technology, 91,2019, 12–27.

Important Links:

Go Back