Huadong Zheng, Yongfeng Tian, Yan Cheng, Caidong Wang, Ayong Li, Xinjie Wang, Fengyang Liu, and Liangwen Wang


  1. [1] R. Daniela and T. Michael, Design, fabrication and control ofsoft robots, Nature, 521(7553), 2015, 467–475.
  2. [2] Z.Q. Shen, F.F. Chen, X.Y. Zhu, K.T. Yong, and G.Y.Gu, Stimuli-responsive functional materials for soft robotics,Journal of Materials Chemistry B, 8(39), 2020, 8972–8991.
  3. [3] H. Banerjee, Z.T.H. Tse, and H.L. Ren, Soft robotics withcompliance and adaptation for biomedical applications andforthcoming challenges, International Journal of Robotics andAutomation, 33(1),2018, 69–80.
  4. [4] Y.L. Yap, S.L. Sing, and W.Y. Yeong, A review of 3D printingprocesses and materials for soft robotics, Rapid PrototypingJournal, 26(8), 2020, 1345–1361.
  5. [5] M.S. Ainla, D.Y. Verma, and GM. Whitesides, Soft, rotatingpneumatic actuator, Soft Robotics, 4(3), 2017, 297–304.
  6. [6] B. Gorissen, D. Reynaerts, S. Konishi, K. Yoshida, J.-W. Kim,and M.D. Volder, Elastic inflatable actuators for soft roboticapplications. Advanced Materials, 29(43), 2017, 1604977.
  7. [7] D. Mccoul, S. Rosset, S. Schlatter, and H. Shea, Inkjet 3Dprinting of UV and thermal cure silicone elastomers for dielectricelastomer actuators, Smart Material Structures, 26(12), 2017,125022.
  8. [8] M. Cianchetti, C. Laschi, A. Menciassi, and P. Dario,Biomedical applications of soft robotics, Nature ReviewsMaterials, 3(6), 2018,143–153.
  9. [9] Y. Kim, E. Genevriere, P. Harker, M. Balicki, S.U. Lee,H.G. Bowman, A.B. Patel, et al, Telerobotic neurovascularinterventions with magnetic manipulation, STROKE, 53(1),2022.
  10. [10] M. Wehner, R.L. Truby, D.J. Fitzgerald, B. Mosadegh, G.M.Whitesides, J.A. Lewis, and R.J. Wood, An integrated designand fabrication strategy for entirely soft, autonomous robots,Nature, 536, 2016, 451–455.
  11. [11] J.Z. Fan, S.Q. Wang, Q.G. Yu, and Y. Zhu, Swimmingperformance of the frog-inspired soft robot, Soft Robotics, 7,2020, 615–626.
  12. [12] X. Wang, A. Khara, and C. Chen, A soft pneumatic bistablereinforced actuator bioinspired by Venus flytrap with enhancedgrasping capability, Bioinspiration and Biomimetics, 15(5),2020, 056017.
  13. [13] Y.H. Chen, S. Le, Q.C. Tan, O. Lau, F. Wan, and C. Song,A lobster-inspired robotic glove for hand rehabilitation, Proc.IEEE International Conference on Robotics and Automation,Singapore, 2017, 4782–4787.
  14. [14] H. Sun, N.Y. Wang, H. Jiang, and X.P. Chen, FlexibleHoneycomb PneuNets robot, International Journal of Roboticsand Automation,31(6),2016 ,475–483.
  15. [15] Y. Kim and X.H. Zhao, Magnetic soft materials and robots,Chemical Reviews, 122(5) ,2022,5317–5364.
  16. [16] C.Y. Chu and R.M. Patterson, Soft robotic devices for handrehabilitation and assistance: A narrative review, Journal ofNeuroEngineering and Rehabilitation, 15(1), 2018, 9.
  17. [17] Y.H. Kai, L.J. Hoon, N. Fatima, and H.Y. Chen, Designand preliminary feasibility study of a soft robotic glove forhand function assistance in stroke survivors, Frontiers inNeuroscience, 9(11), 2017, 547.
  18. [18] W. Kim, J. Byun, J.-K. Kim, W.-Y. Choi, K. Jakobsen, J.Jakobsen, D.-Y. Lee, and K.-J. Cho, Bioinspired dual-morphingstretchable origami, Science Robotic, 4(36), 2019, 1–10.
  19. [19] H. Al-Fahaam, S. Davis, and S. Nefti-Meziani, The design andmathematical modelling of novel extensor bending pneumaticartificial muscles (ebpams) for soft exoskeletons, Robotics andAutonomous Systems, 99, 2018, 63–74.
  20. [20] S.N. Alibadi and S. Davis, The design, kinematics and torqueanalysis of the self-bending soft contraction actuator, Actuators,9(2), 2020, 33.
  21. [21] G.C. Arnau, C. Ian, and R.Y.B. Ferdinando, Toward a commonframework for the design of soft robotic manipulators withfluidic actuation, Soft Robotics, 5(5), 2018, 622–649.
  22. [22] L.L. Yuan, Design and implement of a soft exoskeleton roboticsystem for hand rehabilitation, Dissertation, Huazhong Uni-versity of Science and Technology Wuhan, Hubei, 2018, 16–21.

Important Links:

Go Back