EDGE INTELLIGENCE-BASED OBJECT DETECTION AND RECOGNITION SYSTEM FOR EMBEDDED IOMT APPLICATIONS

Vinaya Gohokar and Vijay Gohokar

References

  1. [1] Z. Zou, Z. Shi, Y. Guo, and J. Ye, Object detection in 20 years:A survey, ArXiv abs/1905.05055, 2019.
  2. [2] A.A. Sheeraz, A. Bilal, A.S. Ghalib, A. Luigi, and M. Waqar,Internet of multimedia things: Vision and challenges, Ad HocNetworks, 33, 2015, 87–111.
  3. [3] V. Mazzia, A. Khaliq, F. Salvetti, and M. Chiaberge, Real-timeapple detection system using embedded systems with hardwareaccelerators: An edge AI application, IEEE Access, 8, 2020,9102–9114.
  4. [4] L. Mingming and G. Lutao, Automatic classification ofapple leaf diseases based on transfer learning, InternationalJournal of Robotics and Automation, 37(1), 2022, 44–51, DOI:10.2316/J.2022.206-0742.
  5. [5] X. Bangquan and W.X. Xiong, Real-time embedded trafficsign recognition using efficient convolutional neural network,IEEE Access, 7, 2019, 53330–53346.
  6. [6] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A.Y.Zomaya, Edge intelligence: The confluence of edge computingand artificial intelligence, IEEE Internet of Things Journal, 7,2020, 74577469. doi:10.1109/jiot.2020.2984887.
  7. [7] Z.-F. Xu, R.-S. Jia, Y. Liu, C.-Y. Zhao, and H.-M. Sun, Fastmethod of detecting tomatoes in a complex scene for pickingrobots, IEEE Access, 8, 2020, 55289–55299.
  8. [8] M. Risso, A. Burrello, F. Conti, L. Lamberti, Y. Chen, L.Benini, E. Macii, M. Poncino, and D.J. Pagliari, Lightweightneural architecture search for temporal convolutional networksat the edge, IEEE Transactions on Computers, 72(3), 2023,744–758.
  9. [9] C. Dong, C. Pang, Z. Li, X. Zeng, and X. Hu, PG-YOLO:A novel lightweight object detection method for edge devicesin industrial Internet of Things, IEEE Access, 10, 2022,123736–123745.
  10. [10] C. Zhang, R. Li, W. Kim, D. Yoon, and P. Patras,Driver behavior recognition via interwoven deep convolutionalneural nets with multi-stream inputs, IEEE Access, 8, 2020,191138–191151.
  11. [11] C. Guo, K. Huang, L. Yarong, Z. Huyin, and Z. Wenwei, Object-oriented semantic mapping and dynamic optimization on amobile robot, International Journal of Robotics and Automa-tion, 2022, 321–331, DOI: https://doi.org/ 10.2316/J.2022.206-0498.
  12. [12] L. Yuri, H. Menghan, Z. Guangtao, and X.Y. Simon,LSNet: Identification of copper and stainless steel usinglaser speckle imaging in dismal surroundings, InternationalJournal of Robotics and Automation, 36, 2021, 256–263, DOI:https://doi.org/ 10.2316/J.2021.206-0568.
  13. [13] P.N. Huu, T.P. Ngoc, and T.L.T. Hai, Developing real-time recognition algorithms on Jetson Nano hardware. inIntelligent Systems and Networks. Lecture Notes in Networksand Systems, N.L. Anh, S.J. Koh, T.D.L. Nguyen, J.Lloret, T.T. Nguyen, (eds), vol 471. Singapore: Springer,2022.
  14. [14] A. Khandewale, V. Gohokar, and P. Nawandar, Edgeintelligence-based object detection system using neuralcompute stick for visually impaired people, Proc. Informationand Communication Technology for Intelligent Systems,Singapore,, 2020, 433–439.
  15. [15] C. Gao, A. Rios-Navarro, X. Chen, S.-C. Liu, and T. Delbruck,Edge DRNN: Recurrent neural network accelerator for edgeinference, IEEE Journal on Emerging and Selected Topics inCircuits and Systems, 10(4), 2020, 419–432.
  16. [16] L. Liang, H. He, J. Zhao, C. Liu, Q. Luo, and X. Chu Anerasure-coded storage system for edge computing, IEEE Access,8, 2020, 96271–96283.
  17. [17] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang,Edge intelligence: Paving the last mile of artificial intelligencewith edge computing, Proceedings of the IEEE, 107, 2019,1738–1762.
  18. [18] Y. Zhang, S. Wang, L. Lu, L. Liu, L. Xu, and W. Shi, OpenEI: An open framework for edge intelligence, Proc. IEEE 39thInternational Conference on Distributed Computing Systems(ICDCS), Dallas, TX, 2019, 1840–1851.
  19. [19] F. Tsai and J.Y. Huang, Predicting canine posture with smartcamera networks powered by the artificial intelligence of things,IEEE Access, 8, 2020, 220848–220857.
  20. [20] P. Adarsh, P. Rathi, and M. Kumar, YOLO v3-Tiny:Object detection and recognition using one stage improvedmodel, Proc. 6th International Conference on AdvancedComputing and Communication Systems, Coimbatore, 2020,687–694.7
  21. [21] Y. Guo, B. Zou, J. Ren, Q. Liu, D. Zhang and Y. Zhang,Distributed and efficient object detection via interactionsamong devices, edge, and cloud, IEEE Transactions onMultimedia, 21(11), 2019, 2903–2915.
  22. [22] M. Nazeer, M. Qayyum, and A. Ahad, Real time objectdetection and recognition in machine learning using JetsonNano, International Journal from Innovative Engineering andManagement Research, 11, 2022, 1–7.
  23. [23] E. G¨uney, C. Bayilmi¸s, and B. C¸akan, An implementationof real-time traffic signs and road objects detection based onmobile GPU platforms, IEEE Access, 10, 2022, 86191–86203.

Important Links:

Go Back