A NOVEL REDUCED-ORDER FAULT RECONSTRUCTION APPROACH FOR MISMATCHED SYSTEMS

Zhenwen Sheng, Yiheng He, Jing He, and Xinliang Hu

References

  1. [1] Z. Zhu, J. Zhong, M. Ding, and M. Wang, Trajectory planningand hierarchical sliding-mode control of underactuated spacerobotic system, International Journal of Robotics andAutomation, 35(6), 2020, 436–443.
  2. [2] J. He, C.F. Zhang, S. Mao, H. Wua, and K. Zhao, Demagnetiza-tion fault detection in permanent magnet synchronous motorsbased on sliding observer, Journal of Nonlinear Sciences andApplications, 9(5), 2016, 2039–2048.
  3. [3] C. Edwards, S.K. Spurgeon, and R.J. Patton, Sliding modeobservers for fault detection and isolation, Automatica, 36(4),2000, 541–553.
  4. [4] J. He, Y. He, J. Liu, C. Zhang, and S.X. Yang, A sliding modefault reconstruction method using improved reduced ordermodel, International Journal of Robotics and Automation,38(2), 2023, 76–84
  5. [5] L. Jia, Y. Wang, J. He, L. Liu, Z. Li, and Y. Shen, Robustadaptive control based on machine learning and NTSMCfor workpiece surface-grinding robot, International Journal ofRobotics and Automation, 35(6), 2020, 444–453.
  6. [6] M. Ahmad and R. Mohd-Mokhtar, Model matching faultdetection filter design for a linear discrete-time system withmixed uncertainties, International Journal of Control, 96(2),2021, 1–12.
  7. [7] C.P and Tan, C. Edwards, An LMI approach for designingsliding mode observers, International Journal of Control,74(16), 2001, 1559–1568.7
  8. [8] C. Aguiar, D. Leite, D. Pereira, G. Andonovski, and I. ˇSkrjanc,Nonlinear modelling and robust LMI fuzzy control of overheadcrane systems, Journal of the Franklin Institute, 358(2), 2021,1376–1402.
  9. [9] J.C.L. Chan, C.P. Tan, H. Trinh, M.A.S. Kamal, and Y.S.Chiew, Robust fault reconstruction for a class of non-infinitelyobservable descriptor systems using two sliding mode observersin cascade, Applied Mathematics and Computation, 350, 2019,78–92.
  10. [10] W.S. Chua, J.C.L. Chan, C.P. Tan, E.K.P. Chong, and S. Saha,Robust fault reconstruction for a class of nonlinear systems,Automatica, 113, 2020, 108718.
  11. [11] K. Liu, Y. Wu, J. Xu, Y. Wang, Z. Ge, and Y. Lu, Fuzzysliding mode control of 3-DOF shoulder joint driven bypneumatic muscle actuators, International Journal of Roboticsand Automation, 34(1), 2019, 38–45.
  12. [12] J. He, L. Mi, S. Mao, C. Zhang, and H. Chu, Fault-tolerantcontrol of a nonlinear system actuator fault based on slidingmode control, Journal of Control Science and Engineering,2017, 2017, 8595960.
  13. [13] Y. Gao, J. Liu, G. Sun, M. Liu, and L. Wu, Fault deviationestimation and integral sliding mode control design for Lipschitznonlinear systems, Systems & Control Letters, 123, 2019, 8–15.
  14. [14] H. Zhao and Y. Niu, Finite-time sliding mode control ofswitched systems with one-sided Lipschitz nonlinearity, Journalof the Franklin Institute, 357(16), 2020, 11171–11188.
  15. [15] M. Yadegar, A. Afshar, and M. Davoodi, Observer-basedtracking controller design for a class of Lipschitz nonlinearsystems, Journal of Vibration and Control, 24(11), 2018,2112–2119.
  16. [16] K. Zhang, B. Jiang, X. Yan, and J. Shen, Interval slidingmode observer based incipient sensor fault detection withapplication to a traction device in China railway high-speed,IEEE Transactions on Vehicular Technology, 68(3), 2019,2585–2597.
  17. [17] D. Li, Y. Wang, J. Wang, C. Wang, and Y. Duan, Recentadvances in sensor fault diagnosis: A review, Sensors andActuators A: Physical, 309, 2020, 111990.
  18. [18] J. Li, K. Pan, and Q. Su, Sensor fault detection and estimationfor switched power electronics systems based on sliding modeobserver, Applied Mathematics and Computation, 353, 2019,282–294.
  19. [19] J. He, C. Zhang, and H Chu, Sliding mode variable structureobserver-based sensor and actuator fault reconstruction fornonlinear system, International Journal of Robotics andAutomation, 36, 2021, 1–13.
  20. [20] F. Nemati, S.M.S. Hamami, and A. Zemouche, A nonlinearobserver-based approach to fault detection, isolation and esti-mation for satellite formation flight application, Automatica,107, 2019, 474–482.
  21. [21] J. He, L. Mi, J. Liu, X. Cheng, Z. Lin, and C. Zhang, Ringcoupling-based collaborative fault-tolerant control for multi-robot actuator fault, International Journal of Robotics andAutomation, 33(6), 2018 672–680.
  22. [22] C.P. Tan and C. Edwards, Robust fault reconstruction inuncertain linear systems using multiple sliding mode observersin cascade, IEEE Transactions on Automatic Control, 55(4),2010, 855–867.
  23. [23] F. Zhu and J. Yang, Fault detection and isolation design foruncertain nonlinear systems based on full-order, reduced-orderand high-order high-gain sliding-mode observers, InternationalJournal of Control, 86(10), 2013, 1800–1812.
  24. [24] A.N. Zhurabok, A.E. Shumsky, and S.V. Pavlov, Diagnosisof linear dynamic systems by the nonparametric method,Automation and Remote Control, 78(7), 2017, 1173–1188.
  25. [25] A.N. Zhirabok, A.V. Zuev, and A.E. Shumsky, Diagnosisof linear dynamic systems: An approach based on slidingmode observers, Automation and Remote Control, 81(2), 2020,211–225.
  26. [26] A.N. Zhirabok, A.E. Shumsky, and A.V. Zuev, Fault diagnosisin linear systems via sliding mode observers, InternationalJournal of Control, 94(2), 2021, 327–335.
  27. [27] B.L. Walcott, M.J Corless, and S.H. Zak, Comparative study ofnon-linear state-observation techniques, International Journalof Control, 45(6), 1987, 2109–2132.
  28. [28] M. Corless and J.A.Y. Tu, State and input estimation for aclass of uncertain systems, Automatica, 34(6), 1998, 757–764.
  29. [29] S. Cobzas, R. Miculescu, and A. Nicolae, Lipschitz functions(Cham: Springer, 2019).
  30. [30] X.G. Yan and C. Edwards, Robust sliding mode observer-based actuator fault detection and isolation for a class ofnonlinear systems, International Journal of Systems Science,39(4), 2008, 349–359.

Important Links:

Go Back