DESIGN OF A RISK MODEL AND ANALYTICAL DECISION INFORMATION SYSTEM FOR POWER OPERATION IN THE CONTEXT OF SMART GRID, 1-9.

Rong Cai, Bin Xia, Xiaoming Zhu, Liang Wang, Jiaru Gu, and Jigang Tang

References

  1. [1] E. Goda, M. Kandil, and K. Nayel, Design of a hybrid powersystem for electrification of new Talkha bridge constructionin Egypt, Bulletin of the Faculty of Engineering MansouraUniversity, 41(4), 2020, 1–10.
  2. [2] S. Yao, M. Wang, L. Yan, Q. Zhang, and Y. Ye, Constructionand optimization of liquefied natural gas regasification cold7energy comprehensive utilization system on floating storageregasification unit, Journal of Thermal Science, 31(6), 2022,1853–1867.
  3. [3] Y. Jia, LoRa-based WSNs construction and low-power datacollection strategy for wetland environmental monitoring,Wireless Personal Communications, 114(2), 2020, 1533–1555.
  4. [4] E. Boughariou, N. Allouche, F.B. Brahim, G. Nasri, andS. Bouri, Delineation of groundwater potentials of Sfaxregion, Tunisia, using fuzzy analytical hierarchy process,frequency ratio, and weights of evidence models, EnvironmentDevelopment and Sustainability, (2), 2021, 1–26.
  5. [5] S.S. Bohra, A. Anvari-Moghaddam, F. Blaabjerg, andB. Mohammadi-Ivatloo, Multi-criteria planning of microgridsfor rural electrification, Journal of Smart Environments andGreen Computing, 1(2), 2021, 120–134.
  6. [6] P.H. Nguyen, A fuzzy analytic hierarchy process (FAHP)based on SERVQUAL for hotel service quality management:Evidence from Vietnam, Journal of Asian Finance Economicsand Business, 8(2), 2021, 1101–1109.
  7. [7] N. Elshaboury, Prioritizing risk events of a large hydroelectricproject using fuzzy analytic hierarchy process, Journal ofProject Management, 6(3), 2021, 107–120.
  8. [8] R. Al, Selection of trusted organic food sellers on Instagramusing fuzzy analytic hierarchy process, Turkish Journal ofComputer and Mathematics Education, 12(3), 2021, 1981–1986.
  9. [9] R. Canmolu, U. Yldrm, and G.M. Negl, Analysis of draughtsurvey errors by extended fuzzy analytic hierarchy process,Journal of ETA Maritime Science, 9(1), 2021, 51–63.
  10. [10] G.M. Osiakwan, A. Gibrilla, A.T. Kabo-Bah, E.K. Appiah-Adjei, and G. Anornu, Delineation of groundwater potentialzones in the Central Region of Ghana using GIS and fuzzyanalytic hierarchy process, Modeling Earth Systems andEnvironment, 8(4), 2022, 5305–5326.
  11. [11] M.R. Goodarzi, A. Niknam, V. Jamali, and H.R. Pourghasemi,Aquifer vulnerability identification using DRASTIC-LU modelmodification by fuzzy analytic hierarchy process, ModelingEarth Systems and Environment, 8(4), 2022, 5365–5380.
  12. [12] N. Wang, Z. Yuan, and P. Wang, Dynamic electromagnetic forcevariation mechanism and energy loss of a non-contact loadingdevice for a water-lubricated bearing, Journal of MechanicalScience and Technology, 35(6), 2021, 2645–2656.
  13. [13] C. Yang, J.F. Long, and T.P. Zhang, Numerical study onenergy loss in discharge channel of LHT-100 Hall thruster,Scientia Sinica Technologica, 51(1), 2021, 99–107.
  14. [14] F.F. Selau, H. Trombini, R.C. Fadanelli, M. Vos, andP.L. Grande, On the energy-loss straggling of protons inelemental solids: The importance of electron bunching, NuclearInstruments and Methods in Physics Research Section B: BeamInteractions with Materials and Atoms, 497, 2021, 70–77.
  15. [15] K.E. Prikhod’ Ko, and M.M. Dement’ Eva, Applicationof electron energy-loss spectroscopy for analysis of themicrostructure of reactor materials, Crystallography Reports,66(4), 2021, 656–662.
  16. [16] J. Chantana, Y. Imai, Y. Kawano, Y. Hishikawa, K. Nishioka,and T. Minemoto, Impact of average photon energy on spectralgain and loss of various-type PV technologies at differentlocations, Renewable Energy, 145(6), 2020, 1317–1324.
  17. [17] S. Filist, R.T. Al-Kasasbeh, O. Shatalova, N. Korenevskiy,A. Shaqadan, Z. Protasova, and M. Lukashov, Biotechnicalsystem based on fuzzy logic prediction for surgical riskclassification using analysis of current-voltage characteristicsof acupuncture points, Journal of Integrative Medicine, 20(3),2022, 252–264.
  18. [18] H.I. Kure, S. Islam, H. Mouratidis, An integrated cyber securityrisk management framework and risk predication for the criticalinfrastructure protection, Neural Computing and Applications,34(18), 2022, 15241–15271.
  19. [19] W.K. Ho, M.C. Tai, J. Dennis, X. Shu, J. Li, P.J. Ho,I.Y. Millwood, et al., Polygenic risk scores for prediction ofbreast cancer risk in Asian populations, Genetics in Medicine,24(3), 2022, 586–600.
  20. [20] L. Chang, E. Zio, H.L. Yan, Remaining useful life predictionfor complex systems considering varying future operationalconditions, Quality and Reliability Engineering International,38(1), 2022, 516–531.

Important Links:

Go Back