PREDICTION OF RECEIVED SIGNAL STRENGTH USING THE FUZZY LOGIC CONTROLLER FOR LOCALISATION OF SENSORS IN MOBILE ROBOTS

Sneha Suresh Kumaran, Samson Jerold Samuel Chelladurai, K.B. Badri Narayanan, and T.A. Selvan

References

  1. [1] P.K. Panigrahi and S.K. Bisoy, Localization strategies forautonomous mobile robots: a review, Journal King SaudUniversity - Computer Information Sciences, 34, 2022,6019–6039.
  2. [2] Z. Xiao and Y. Zeng, An overview on integrated localizationand communication towards 6G, Science China InformationSciences, 65, 2021, 131301.
  3. [3] Z. Zhou, L. Li, A. F¨ursterling, H.J. Durocher, J. Mouridsen,and X. Zhang, Learning-based object detection and localizationfor a mobile robot manipulator in SME production, Roboticsand Computer-Integrated Manufacturing, 73, 2022, 102229.
  4. [4] A. Albanese, V. Sciancalepore, A. Banchs, and X. Costa-P´erez,LOKO: Localization-aware roll-out planning for future mobilenetworks, IEEE Transactions on Mobile Computing, 22, 2022,5359–5374. https://doi.org/10.1109/TMC.2022.3168076.
  5. [5] T. Yabe, N.K.W. Jones, P.S.C. Rao, M.C. Gonzalez, and S.V.Ukkusuri, Mobile phone location data for disasters: a reviewfrom natural hazards and epidemics, Computers, Environmentand Urban Systems, 94, 2022, 101777.
  6. [6] K.L. Keung, Y.Y. Chan, K.K.H. Ng, S.L. Mak, C.H. Li, Y. Qin,and C.W. Yu, Edge intelligence and agnostic robotic paradigmin resource synchronisation and sharing in flexible robotic andfacility control system, Advanced Engineering Informatics, 52,2022, 101530.
  7. [7] G. Deak, K. Curran, and J. Condell, A survey ofactive and passive indoor localisation systems, ComputerCommunications, 35, 2012, 1939–1954.
  8. [8] S. ˇCapkun, M. Hamdi, and J.-P. Hubaux, GPS-free positioningin mobile ad hoc networks, Cluster Computing, 5, 2002,157–167.
  9. [9] N. Bulusu, J. Heidemann, and D. Estrin, GPS-less low-costoutdoor localization for very small devices, IEEE PersonalCommunication, 7, 2000, 28–34.
  10. [10] H. Obeidat, W. Shuaieb, O. Obeidat, and R. Abd-Alhameed,A review of indoor localization techniques and wireless tech-nologies, 119, 2021, 289–327. https://doi.org/10.1007/s11277-021-08209-5.
  11. [11] H. Zhang, Y. Xia, K. Liu, F. Jin, C. Chen, andY. Liao, A Kalman filter based indoor tracking systemvia joint Wi-Fi/PDR localization, Proc. IEEE Smart-World, Ubiquitous Intelligence & Computing, Advanced &Trusted Computing, Scalable Computing & Communications,Cloud & Big Data Computing, Internet of People andSmart City Innovation, Guangzhou, China, 2018, 1444–1449,https://doi.org/10.1109/SmartWorld.2018.00250.
  12. [12] P. Bahl and V.N. Padmanabhan, RADAR: An in-buildingRF-based user location and tracking system, Proc. IEEEINFOCOM 2000. Conference on Computer Communications.Nineteenth Annual Joint Conference of the IEEE Computerand Communications Societies IEEE, Tel Aviv, Israel, 2000,775–784, https://doi.org/10.1109/INFCOM.2000.832252.
  13. [13] Y. Yang, B. Huang, Z. Xu, and R. Yang, A fuzzy logic-based energy-adaptive localization scheme by fusing WiFi and8PDR, Wireless Communications and Mobile Computing, 2023,9052477, https://doi.org/10.1155/2023/9052477.
  14. [14] X. Ou, M. Wu, Y. Pu, B. Tu, G. Zhang, and Z. Xu, Cuckoosearch algorithm with fuzzy logic and Gauss–Cauchy forminimizing localization error of WSN, Applied Soft Computing,125, 2022, 109211.
  15. [15] P. Singh, N. Mittal, and R. Salgotra, Comparison of range-based versus range-free WSNs localization using adaptive SSAalgorithm, Wireless Networks, 28, 2022, 1625–1647.
  16. [16] D.K. Mishra, A. Thomas, J. Kuruvilla, P. Kalyanasundaram,K.R. Prasad, and A. Haldorai, Design of mobile robot naviga-tion controller using neuro-fuzzy logic system, Computers andElectrical Engineering, 101, 2022, 108044.
  17. [17] J. Chadha and A. Jain, Fuzzy logic-based range-free localizationin WSN, Proc. Machine Learning, Advances in Computing,Renewable Energy and Communication, Singapore, 2022,89–97, https://doi.org/10.1007/978-981-16-2354-7 9.
  18. [18] B. Karaduman, B.T. Tezel, and M. Challenger, Deploymentof software agents and application of fuzzy controller on theUWB localization based mobile robots, Proc. InternationalConference on Intelligent and Fuzzy Systems, Cham, 2022,98–105, https://doi.org/10.1007/978-3-031-09173-5 13.
  19. [19] E. Rahayu, A. Rusdinar, B. Rahmat, and C. Setianingsih,Inverted global sensor for automated guided vehicle localizationand navigation, Proc. 4th International Conf. on SmartSensors Application, Kuala Lumpur, Malaysia, 2022, 5–10,https://doi.org/10.1109/ICSSA54161.2022.9870958.
  20. [20] P. Singh, N. Mittal, and P. Singh, A novel hybrid range-freeapproach to locate sensor nodes in 3D WSN using GWO-FAalgorithm, Telecommunication Systems, 80, 2022, 303–323.
  21. [21] B. Bhushan and G. Sahoo, FLEAC: Fuzzy logic-based energyadequate clustering protocol for wireless sensor networksusing improved grasshopper optimization algorithm, WirelessPersonal Communications, 124, 2022, 573–606.
  22. [22] M. Vargheese, S. Vanithamani, D.S. David, and G.R.K. Rao,Design of fuzzy logic control framework for QoS routing inMANET, Intelligent Automation and Soft Computing, 35,2023, 3479–3499.
  23. [23] R. Ranjita and S. Acharya, A fuzzy logic-based congestiondetection technique for vehicular ad hoc networks, Proc.Advances in Distributed Computing and Machine Learning,Singapore, 2022, 167–177, https://doi.org/10.1007/978-981-19-1018-0 15.
  24. [24] B. Fahima and N. Abdelkrim, Multispectral visual odometryusing SVSF for mobile robot localization, Unmanned Systems,10, 2022, 273–288.
  25. [25] O. Bamasaq, D. Alghazzawi, S. Bhatia, P. Dadheech, F. Arslan,S. Sengan, and S.H. Hassan, Distance matrix and Markov chainbased sensor localization in WSN, Computers, Materials andContinua, 71, 2022, 4051–4068.
  26. [26] Himanshu, R. Khanna, and A. Kumar, Knowledge acquisitionfor 3D coordinates of target in wireless sensor networksfor smart city application, Expert Systems, 39, 2022,https://doi.org/10.1111/exsy.12910.
  27. [27] B. Narayanan and M. Sreekumar, Design, modelling, optimi-sation and validation of condition-based maintenance in IoTenabled hybrid flow shop, International Journal of ComputerIntegrated Manufacturing, 35, 2022,927–941.
  28. [28] K.B. Badri Narayanan and M. Sreekumar, Diagnosing of riskstate in subsystems of CNC turning center using intervaltype-2 fuzzy logic system with semi elliptic membershipfunctions, International Journal of Fuzzy Systems, 24, 2022,823–840.
  29. [29] K.B.B. Narayanan and S. Muthusamy, Prediction of machin-ability parameters in turning operation using interval type-2 fuzzy logic system based on semi-elliptic and trapezoidalmembership functions, Soft Computing, 26, 2022, 3197–3216.
  30. [30] Y. Zhuang, K. Wang, W. Wang, and H. Hu, A hybrid sensingapproach to mobile robot localization in complex indoor envi-ronments, International Journal of Robotics and Automation,27, 2012, https://doi.org/10.2316/Journal.206.2012.2.206-3498.
  31. [31] J. Savage, E. Marquez, and F. Lepe-Casillas, Hidden Markovmodels and vector quantization for mobile robot localization,Robotics and Applications, 2005.
  32. [32] A. Kraeussling, A novel approach to the mobile robot local-ization problem using tracking methods, Proc. 13th IASTEDInternational Conference on Robotics and Applications (RA2007), W¨urzburg, 2007, 107–112.
  33. [33] W.Z.C. Guo, K. Huang, Y. Luo, and H. Zhang, Object-orientedsemantic mapping and dynamic optimization on a mobile robot,International Journal of Robotics and Automation, 37, 2022,321–331.
  34. [34] A. Bayram and A.S. Duru, Design and control of arehabilitation robot manipulator for head–neck orthopaedicdisorders, International Journal of Robotics and Automation,37, 2022, 486–497.
  35. [35] Y. D.Q. Zou, C. Ming, and L. Dong, Brain-inspired cognitivemap building for mobile robot, International Journal ofRobotics and Automation, 37, 2022, 88–96.
  36. [36] H.J.M. Tapas, K. Maiti, D. Sunandan, O. Yoshihiro, and M.M.-Mattausch, Electro-mechanical model and its application tobiped-robot stability with force sensors, International Journalof Robotics and Automation, 37, 2022, 332–345.
  37. [37] H. Kang, J. Yun, S. Kim, and J. Lee, Mobile robot localizationby EKF and indoor GPS based on eliminated maximumerror anchor, Proc. Robotics, Calgary, AB, Canada, 2010,https://doi.org/10.2316/P.2010.703-054.
  38. [38] Y. Lu, V. Polotski, and J. Sasiadek, Outdoor mobile robotlocalization with 2-D laser range sensor, Proc. Tenth IASTEDInternational Conference, Beijing , 2007, 622–803.
  39. [39] Y. Li, W. Liu, L. Li, and X. Lei, Charging trajectory planningand motion control for indoor mobile robots, InternationalJournal of Robotics and Automation, 37, 2022, 520–528.
  40. [40] T.D. Dung and G. Capi, Application of neural networks forrobot 3D mapping and annotation using depth image camera,International Journal of Robotics and Automation, 37, 2022,529–536.
  41. [41] X. Wang, Z. Xia, X. Zhou, J. Wei, X. Gu, and H. Yan, Collision-free path planning for arc welding robot based on IDA-DEalgorithm, International Journal of Robotics and Automation,37, 2022, 476–485.
  42. [42] J. V. Marti, J. Sales, R. Marin, and E. Jimenez-Ruiz,Localization of mobile sensors and actuators for intervention inlow-visibility conditions: The ZigBee fingerprinting approach,International Journal of Distributed Sensor Networks, 2012,(2012), 951213. https://doi.org/10.1155/2012/951213.
  43. [43] P.K. Muhuri and A.K. Shukla, Semi-elliptic membership func-tion: Representation, generation, operations, defuzzification,ranking and its application to the real-time task schedulingproblem, Engineering Applications of Artificial Intelligence,60, 2017, 71–82.
  44. [44] L. Jouffe, Fuzzy inference system learning by reinforcementmethods, IEEE Transactions on Systems, Man, and Cybernet-ics, Part C (Applications and Reviews), 28, 1998, 338–355.

Important Links:

Go Back