K. Subha Sharmini, K. Vijayakumar, P.U. Poornima, and S. Padmini


  1. [1] S.F. Bush, Smart Grid Communication Enabled Intelligencefor the Electric Power Grid, 2nd edition (UK: John Wiley andSons, 2015).
  2. [2] B. Nordman, K. Christensen, and A. Meier, Think globally,distribute power locally- The promise of nano-grids, Computer,45(9), 2012, 89–91.
  3. [3] C. Mamay, B. Nordman, and J. Lai, Future roles of milli, micro,and nano grids, Proc. CIGRE International Symposium- TheElectric Power System of the Future Integrating Super Gridsand Micro Grids, Bologna, Italy, 2011.
  4. [4] B. Nordman, Nano-grids evolving our electricity systemsform the bottom-up, Technical report, Environmental EnergyTechnologies Division, Lawrence Berkeley National Laboratory,CA, USA, 1981.
  5. [5] A. Werth, N. Kitamura, and K. Tanaka, Conceptual studyfor open energy systems: Distributed energy network usinginterconnected DC nano-grids, IEEE Transactions on SmartGrids, 6(4), 2015, 1621–1630.
  6. [6] S. Zeltner and S. Endres, Power electronics for smart microand nano grids controlled by a novel two-wire interface withintegrated power and signal transfer, Proc. 2014 InternationalSymposium on Communication Systems, Networks and DigitalSignals, Manchester, UK, 2014.
  7. [7] Y. Shen, Z. Qin, and W. Huai, Control of Power ElectronicConverters and Systems, 1st edition (UK: Academic Press,2018).
  8. [8] F. Wang, J. Xu, and S. V. Mollov, Comparison studyof switching DC-DC Converter Control Techniques, Proc.International Conference on Communications, Circuits, andSystem, Guilin, China, 2006.
  9. [9] A. J. Forsyth and S.V. Mollov, Modeling and Control of DC-DC Converters, Journal of Power Engineering, 12(5), 1998,229–236.
  10. [10] M. Shahbazi and A. Khorsandi, Micro-grid- Advanced ControlMethods and Renewable Energy System Integration, 1st edition(UK: Butterworth-Heinemann, 2017).
  11. [11] S.S.Kannan, K. Vijayakumar, and R. Ramanujam, Powerelectronic interface (PEI) based power flow control formicro-grid environment-A review, Proc. International Con-ference on Computation of Power, Energy, Informationand Communication, Melmaruvathur, Chennai-India, 2016,376–380.
  12. [12] H. Rezk and F. Ahmed, Performance improvement of PEMfuel cell using variable step-size incremental resistance MPPTtechnique, MDPI-Sustainability, 12(14), 2020, 5601
  13. [13] C. John De Britto, S. Nagarajan, and R. Senthil Kumar,Effective design and implementation of hybrid renewable systemusing convex programming, International Journal of GreenEnergy, 2022, DOI:10.1080/15435075.2022.2160634
  14. [14] S. Kumar, A.K. Pal, S. Kamal, and X. Xiong, Design of switchedhigh-gain observer for non-linear systems, International Journalof Systems Science, 2023, DOI:10.1080/00207721.2023.2178863
  15. [15] S. Kumar, S.K. Soni, A.K. Pal, S. Kamal, and X. Xiong, Non-linear polytopic systems with predefined time convergence,IEEE Transactions on Circuits and Systems II: Express Briefs,2022, DOI:10.1109/TCSII:2021.3125722.
  16. [16] F. Dwi, M. Moh, K. Widarsono, and M. Azizi, Robustnessanalysis of PID controller bidirectional SEPIC/ZETA forenergy management in DC nano-grid isolated system, Proc.2018 International Conference on Information technology,Information System and Electrical Engineering, Yogyakarta,Indonesia, 2018.
  17. [17] F. Haugen, Basic Dynamics and Control, 1st edition (Norway:Tech-Teach, 2010).
  18. [18] A. Mellit and A.A. Kalogirou, ANFIS based modeling forphotovoltaic power supply system: A case study, RenewableEnergy, 36(1), 2011, 250–258.
  19. [19] M.M. Ismail and A.F. Bendary, Smart battery controller usingANFIS for three phase grid connected PV array system,Mathematics and Computer in Simulation, 167(1), 2020,104–118.
  20. [20] S. Statkic, B. Jovaovic, A. Micic, Arsic, Nebojsa, and S. Jovic,Adaptive neuro fuzzy selection of the most important factors forphotovoltaic pumping system performance prediction, Journalof Building Engineering, 30(1), 2020, 101242.
  21. [21] S. Yaqubi, M. Homaeinezhad, and M.R. Homaeinezhad,Adaptive fuzzy-wavelet neural networks based real-timegenerator for increasing tracking precision of multivariableservo actuator, Mechatronics Systems and Control, 50(1), 2022,49–54.
  22. [22] S. Ghosh, H. Goud, P. Swarhkar, and D.M. Deshpande, Designof an optimized adaptive PID control for induction motor drive,Mechatronics Systems and Control, 49(3), 2021, 164–170.
  23. [23] J. George and G. Mani, HIL implementation of harmony searchbased redesigned PI-like control for DC servo, MechatronicsSystems and Control, 51(1), 2023, 1–10.
  24. [24] P. Garcia, C.A. Garcia, L.M. Fernandez, F. Llorens, andF. Jurado, ANFIS based control of a grid connected hybridsystem integrating renewable energies, hydrogen and batteries,IEEE Transactions on Industrial Informatics, 10(2), 2013,1107–1117.
  25. [25] K.B. Srishail, R. Sachin, H. Pradeepa, H.B. Nagesh, andM.V. Likith Kumar, Grid power quality enhancement using anANFIS optimized PI controller for DG, Protection and Controlof Modern Power Systems, 7(1), 2022, 3.
  26. [26] K. Subha Sharmini and K. Vijayakumar, Digitized droopcontrol of a high gain primitive converter- General performanceanalysis for smart city lighting application, ComputationalIntelligence, 37(3), 2020, 1405–1414.
  27. [27] K. Subha Sharmini and K. Vijayakumar, I-V mode integrateddroop PI controller for automotive LED applications, ControlEngineering and Applied Informatics, 23(2), 2021, 77–86.227

Important Links:

Go Back