NONLINEAR CONTROL DESIGN OPPORTUNITIES FOR AN ELECTROHYDRAULIC SERVOSYSTEM AFFINE IN A CONTROL FORM, 193-201.

Honorine Angue Mintsa, Geremino Ella Eny, Rolland Michel Assoumou Nzue, and Nzamba Senouveau

References

  1. [1] A.M. Al Aela, J.-P. Kenne, and H.A.J. Mintsa, Adaptiveneural network and nonlinear electrohydraulic active suspensioncontrol system, Journal of Vibration and Control, 28(3–4),2022, 243–259.
  2. [2] C. Zhou, X. Zhao, and Q. Yu, Adaptive robust control foractive suspension system using T–S fuzzy model approach,Mechatronic Systems and Control, 46(2), 2018, 46–54.
  3. [3] B. Yu, Q. Zhu, J. Yao, J. Zhang, Z. Huang, Z. Jin, andX. Wang, Design, mathematical modeling and force controlfor electro-hydraulic servo system with pump-valve compounddrive, IEEE Access, 8, 2020, 171988–172005.
  4. [4] S. Zhao, K. Chen, X. Zhang, Y. Zhao, G. Jing, C. Yin, andX. Xiao, A high-order load model and the control algorithmfor an aerospace electro-hydraulic actuator, Actuators, 10(3),2021, 53.
  5. [5] X. Li, Y.-M. Fang, and L. Liu, Hydraulic servo position systemof rolling mill based on improved extended state observer,Mechatronic Systems and Control, 47(4), 2019, 201–208.
  6. [6] N. Ishak, M. Tajjudin, H. Ismail, M.H.F. Rahiman, Y.M. Sam,and R. Adnan, PID studies on position tracking control of anelectro-hydraulic actuator, International Journal of ControlScience and Engineering, 2, 2012, 120–126.
  7. [7] C.C. Soon, R. Ghazali, S.H. Chong, M.F. Ghani, Y.M. Sam, andZ. Has, Classical and metaheuristic optimizations performancein an electro-hydraulic control system, International Journalof Mechanical Engineering and Robotics Research, 11(3), 2022192–197.
  8. [8] D. Pandey, S. Yadav, and S. Mishra, Design of various controlstrategies for electro-hydraulic system, Proc. InternationalConf. on Soft Computing for Intelligent Systems, Singapore,2021, 397–406.
  9. [9] F. Isdaryani, F. Feriyonika, and R. Ferdiansyah, Comparison ofZiegler-Nichols and Cohen Coon tuning method for magneticlevitation control system, Journal of Physics: Conference Series, 1450(1), 2020, 012033.
  10. [10] K. Devendiranath, S.M. Othman, N. Sunar, H.H. Basri, A.H.Ismail, M.N. Ayob, M.S.M. Azmi, and M.S.M. Hashim, ,Position tracking performance with fine tune Ziegler-NicholsPID controller for electro-hydraulic actuator in aerospacevehicle model, Journal of Physics: Conference Series, 2107(1),2021, 012064.
  11. [11] Y. Fan, J. Shao, and G. Sun, Optimized PID controller based onbeetle antennae search algorithm for electro-hydraulic positionservo control system, Sensors, 19(12), 2019, 2727.
  12. [12] M.Y. Coskun, and M. ˙Itik, Intelligent PID control of anindustrial electro-hydraulic system, ISA Transaction, to bepublished.
  13. [13] J. Bhookya and R.K. Jatoth, PID controller design fordecentralized TITO process using modified differential evolu-tion algorithm, Mechatronic Systems and Control, 19, 2021,179–189.
  14. [14] S. Ghosh, H. Goud, P. Swarnkar, and D.M. Deshpande, Designof an optimized adaptive PID controller for induction motordrive, Mechatronic Systems and Control, 49(3), 2021, 164–170.
  15. [15] H.R. Patel, and V.A. Shah, A metaheuristic approach forinterval type-2 fuzzy fractional order fault-tolerant controllerfor a class of uncertain nonlinear system, Journal for Control,Measurement, Electronics, Computing and Communications,63(4), 2022, 656–675.
  16. [16] H.R. Patel and V.A. Shah, A fractional and integer orderPID controller for nonlinear system: Two non-interactingconical tank process case study, Proc. International Conf. onPower, Control and Communication Infrastructure (ICPCCI ),Singapore, 2020, 37–55.
  17. [17] H.R. Patel and V.A. Shah, Comparative study betweenfractional order PIλDµ and integer order PID controller:A case study of coupled conical tank system with actuatorfaults, Proc. 4th Conf. on Control and Fault Tolerant Systems(SysTol), Casablanca, 2019, 390–396.
  18. [18] H.R. Patel and V.A. Shah, Shadowed type-2 fuzzy sets indynamic parameter adaption in cuckoo search and flowerpollination algorithms for optimal design of fuzzy fault-tolerantcontrollers, Mathematical and Computational Applications,27(6), 2022, 89.
  19. [19] H. Li, Control, Research on control strategy of electronicallycontrolled power shift actuator based on fuzzy PID,Mechatronic Systems and Control, 47(3), 2019, 12–135.
  20. [20] G. Wrat, M. Bhola, P. Ranjan, S.K. Mishra, and J. Das, Energysaving and fuzzy-PID position control of electro-hydraulicsystem by leakage compensation through proportional flowcontrol valve, ISA Transactions, 101, 2020, 269–280.
  21. [21] M.F. Ghani, R. Ghazali, H.I. Jaafar, C.C. Soon, Y.M. Sam, andZ. Has, Improved third order PID sliding mode controller forelectrohydraulic actuator tracking control, Journal of Roboticsand Control, 3(2), 2022, 219–226.
  22. [22] T.C. Do, D.T. Tran, T.Q. Dinh, and K.K. Ahn, Trackingcontrol for an electro-hydraulic rotary actuator using fractionalorder fuzzy PID controller, Electronics, 9(6), 2020, 926.
  23. [23] H. Chen and J. Ye, Trajectory tracking control system ofwheeled mobile robot based on PID feed-forward, MechatronicSystems and Control, 6, 2022, 7.
  24. [24] H.A. Trinh, H.V.A. Truong, and K.K. Ahn, Fault estimationand fault-tolerant control for the pump-controlled electrohy-draulic system, Actuators, 9(4), 2020, 132.
  25. [25] B.B. Ghosh, B.K. Sarkar, and R. Saha, Realtime performanceanalysis of different combinations of fuzzy–PID and biascontrollers for a two degree of freedom electrohydraulic parallelmanipulator, Robotics and Computer-Integrated Manufactur-ing, 34, 2015, 62–69.
  26. [26] A.K. Kumawat, R. Kumawat, M. Rawat, and R. Rout, Realtime position control of electrohydraulic system using PIDcontroller, Materials Today: Proceedings, 47, 2021, 2966–2969.
  27. [27] H.E. Merritt, Hydraulic Control Systems. (New York, NY:Wiley, 1967).
  28. [28] H.K. Khalil, Nonlinear Systems. (Upper Saddle River, NJ:Prentice-Hall, 2002).
  29. [29] J. Seo, R. Venugopal, and J.-P. Kenn´e, Feedback linearizationbased control of a rotational hydraulic drive, IFAC ProceedingsVolumes, 40(12), 2007, 940–945.
  30. [30] H.A. Mintsa, R. Venugopal, J.-P. Kenne, and C. Belleau,Feedback linearization-based position control of an electrohy-draulic servo system with supply pressure uncertainty, IEEE200Transactions on Control Systems Technology, 20(4), 2012,1092–1099.
  31. [31] S. Wang, Q. Xu, R. Lin, M. Yang, W. Zheng, and Z.Wang, Feedback linearization control for electro-hydraulic servosystem based on nonlinear disturbance observer, Proc. 36thChinese Control Conference (CCC), Dalian, 2017, 4940–4945.
  32. [32] G. Chen, P. Jia, G. Yan, H. Liu, W. Chen, C. Jia, and C. Ai,Research on feedback-linearized sliding mode control of direct-drive volume control electro-hydraulic servo system, Processes,9(9), 2021, 1676.
  33. [33] G. Chen, P. Jia, G. Yan, H. Liu, W. Chen, C. Jia, and C. Ai,Research on feedback-linearized sliding mode control of direct-drive volume control electro-hydraulic servo system, Processes,9(9), 2021, 1676.
  34. [34] M. Krstic, A.P.V. Kokotovic, and A.I. Kanellakopoulos,Nonlinear and Adaptive Control Design (New York, NY: Wiley,1995).
  35. [35] Z. Artstein, Stabilization with relaxed controls, NonlinearAnalysis: Theory, Methods & Applications, 7(11), 1983, 1163-1173.
  36. [36] C. Kaddissi, J.P. Kenne, and M. Saad, Identification andreal-time control of an electrohydraulic servo system basedon nonlinear backstepping, IEEE/ASME Transactions onMechatronics, 12(1), 2007, 12–22.
  37. [37] C. Kaddissi, M. Saad, and J.-P. Kenn´e, Interlaced backsteppingand integrator forwarding for nonlinear control of anelectrohydraulic active suspension, Journal of Vibration andControl, 15(1), 2009, 101–131.
  38. [38] H. Angue Mintsa, G. Ella Eny, N. Senouveau, J.-P. Kenn´e,and R.M. Assoumou Nzu´e, An alternative nonlinear Lyapunovredesign velocity controller for an electrohydraulic drive,Journal of Robotics and Control, 4(2), 2023, 192–201.
  39. [39] M.Y. Hassan, A.J. Humaidi, and M.K. Hamza, On the design ofbackstepping controller for Acrobot system based on adaptiveobserver, International Review of Electrical Engineering, 15(4),2020, 328–335.
  40. [40] E.-M. Boufounas and A. El Amrani, Backstepping integralsliding mode control for energy capture optimization of windturbine system, Mechatronic Systems and Control, 47(4), 2019,225–234.
  41. [41] A. Humaidi, M. Hameed, and A.J.Hameed, Technology, designof block-backstepping controller to ball and arc system basedon zero dynamic theory, Journal of Engineering Science andTechnology, 13(7), 2018, 2084–2105.
  42. [42] H. Angue-Mintsa, R. Venugopal, J.-P. Kenn´e, and C. Belleau,Adaptive position control of an electrohydraulic servo systemwith load disturbance rejection and friction compensation,Journal of Dynamic Systems, Measurement, and Control,133(6), 2011, 64506.
  43. [43] J.-J.E. Slotine and W. Li, Applied nonlinear control/Jean-Jacques. (Englewood Cliffs NJ: Prentice-Hall, 1991).
  44. [44] V.D. Yurkevich, Design of nonlinear control systems with thehighest derivative in feedback. (Singapore: World Scientific,2004).
  45. [45] V. Utkin and L. Hoon, Chattering problem in sliding modecontrol systems, Proc. International Workshop on VariableStructure Systems, Alghero, 2006, 346–350.
  46. [46] D. Aeyels and J. Peuteman, Uniform asymptotic stabilityof linear time-varying systems, in V. Blondel, E.D. Sontag,M. Vidyasagar, and J.C. Willems, (eds.), Open Problems inMathematical Systems and Control Theory (London: Springer,1999), 1–5.

Important Links:

Go Back