NONLINEAR ANALYSES OF ELECTROGASTROGRAMS DURING OLFACTORY STIMULATION WITH VANILLA ODORANT, 152-158.

Eiji Takai, Kohki Nakane, and Hiroki Takada

References

  1. [1] K. Nagai, A. Niijima, Y. Horii, J. Shen, and M. Tanida,Olfactory stimulatory with grapefruit and lavender oils changeautonomic nerve activity and physiological function, AutonomicNeuroscience: Basic and Clinical, 185, 2014, 29–35.
  2. [2] K. Kuroda, N. Inoue, Y. Ito, K. Kubota, A. Sugimoto, T.Kakuda, and T. Fushiki, Sedative effects of the jasmine teaodor and (R)-(–)-linalool, one of its major odor components, onautonomic nerve activity and mood states, European Journalof Applied Physiology, 95(2–3), 2005, 107–114.
  3. [3] R. Masago, T. Matsuda, Y. Kikuchi, Y. Miyazaki, K. Iwanaga,H. Harada, and T. Katsuura, Effects of inhalation of essentialoils on EEG activity and sensory evaluation, Journal ofPhysiological Anthropology and Applied Human Science, 19(1),2000, 35–42.
  4. [4] T. Mori, Y. Maekawa, Y. Akiyama, F. Mishima, K. Sutani,S. Iwaki, and S. Nishijima, Fundamental study for controllingenvironment using biological signal, Control and IntelligentSystems, 40(3), 2012, 151–159.
  5. [5] M. Iriki and T. Saigusa, Regional differentiation of sympatheticdifferents during fever, Progress in Brain Research, 115, 1998,477–497.
  6. [6] W.C. Alvarez, The electrogastrogram and what it shows,The Journal of the American Medical Association, 78, 1922,1116–1118.
  7. [7] Y. Matsuura and H. Takada, Form and its nonlinear analysisfor the use of electrogastrogram as a gastrointestinal motilitytest, Forma, 26, 2011, 39–50.
  8. [8] F. Kinoshita and H. Takada, Numerical analysis of stochasticdifferential equations describing body sway while viewing 3Dvideo clips, Mechatronic Systems and Control, 47(2), 2019,98–105.
  9. [9] F. Takens, Detecting strange attractors in turbulence, InLecture notes in mathematics, 898, 1981, 366–381.156
  10. [10] G.P. King, R. Jones, and D.S. Broomhead, Phase portraits froma time series: A singular system approach, Nuclear Physics B- Proceedings Supplements, 2, 1987, 379–390.
  11. [11] A.M. Fraser and H.L. Swinney, Independent co-ordinates forstrange attractors from mutual information, Physical ReviewA, 33(2), 1986, 1134–1140.
  12. [12] M.B. Kennel, R. Brown, and H.D.I. Abarbanel, Determiningembedding dimension for phase-space reconstruction using ageometrical construction, Physical Review A, 45(6), 1992,3403–3411.
  13. [13] Y. Matsuura and H. Takada, Comparison of electrogastrogramsin seated and supine positions using Wayland algorithm,Advances in Science, Technology and Engineering SystemsJournal, 4(4), 2019, 42-46.
  14. [14] Y. Matsuura, H. Takada, K. Yokoyama, and K. Shimada,Proposal for a new diagram to evaluate the form of the attractorreconstructed from electrogastrography, Forma, 23(1), 2008,25–30.
  15. [15] R. Bhavsar, N. Davey, N. Helian, Y. Sun, T. Steffert, and D.Mayor, Time series analysis using embedding dimension onheart rate variability, Procedia Computer Science, 145, 2018,89–96.
  16. [16] Y. Nakayama, N. Suzuki, H. Nakaoka, K. Tsumura, K.Takaguchi, K. Takaya, and M. Hanazato, E. Todaka, andC. Mori, Assessment of personal relaxation in indoor-airenvironments: study in real full-scale laboratory houses,International Journal of Environmental Research and PublicHealth, 18(19), 2021, 10246.
  17. [17] K. Nakane, A. Sugiura, and H. Takada, Estimating aminimum embedding dimension by false nearest neighborsmethod without an arbitrary threshold, Advances in Science,Technology and Engineering Systems, 7(4), 2022, 114–120.
  18. [18] F. Kinoshita, K. Fujita, K. Miyanaga, H. Touyama, M. Takada,and H. Takada, Nonlinear analysis of electrogastrograms duringacute exercise loads, Journal of Sports Medicine & DopingStudies, 8(2), 2018, 201.
  19. [19] R. Wayland, D. Bromley, D. Pickett, and A. Passamante,Recognizing determinism in a time series, Physical ReviewLetters, 70(5), 1993, 580–582.
  20. [20] E. Takai, T. Aoyagi, K. Ichikawa, Y. Matsuura, F. Kinoshita,and H. Takada, Effect of olfactory stimulation with vanilla odoron degree of gastric myoelectrical activity, Japanese Journalof Hygiene, 77, 2022, 20012. (in Japanese)
  21. [21] R.J. Zatorre, M. Jones-Gotman, and C. Rouby, Neuralmechanisms involved in odor pleasantness and intensityjudgments, Neuroreport, 11(12), 2000, 2711–2716.
  22. [22] H. Carlson, J. Leit˜ao, S. Delplanque, I. Cayeux, D. Sander, andP. Vuilleumier, Sustained effects of pleasant and unpleasantsmells on resting state brain activity, Cortex, 132, 2020,386–403.
  23. [23] Chaos and time series, 1st ed. (Tokyo: Baifukan, 2002). (inJapanese)
  24. [24] A. Krakovsk´a, K. Mezeiov´a, and H. Bud´aˇcov´a, Use offalse nearest neighbors for selecting variables and embeddingparameters for state space reconstruction, Journal of ComplexSystems, 2015, 2015, 932750.
  25. [25] J. Fell, K. Mann, J. R¨oschke, and M.S. Gopinathan, Nonlinearanalysis of continuous ECG during sleep I. Reconstruction,Biological Cybernetics, 82, 2000, 477–483.
  26. [26] J. Pedro-Carracedo, D. Fuentes-Jimenez, A.M. Ugena, and A.P.Gonzalez-Marcos, Phase space reconstruction from a biologicaltime series: a photoplethysmographic signal case study, AppliedSciences, 10, 2020, 1430.
  27. [27] N. Sviridova, T. Zhao, K. Aihara, K. Nakamura, and A. Nakano,Photoplethysmogram at green light: where does chaos arisefrom? Chaos, Solitons and Fractals, 116, 2018, 157–165.
  28. [28] Z. Liang, Y. Wang, Y. Ren, D. Li, L. Voss, J. Sleigh, andX. Li, Detection of burst suppression patterns in EEG usingrecurrence rate, The Scientific World Journal, 2014, 2014,295070.
  29. [29] F. Altındi¸s, B. Yılmaz, S. Borisenok, and K. ˙I¸c¨oz, Parameterinvestigation of topological data analysis for EEG signals,Biomedical Signal Processing and Control, 63, 2021, 102196.
  30. [30] A. Ghouse, M. Nardelli, and G. Valenza, fNIRS complexityanalysis for the assessment of motor imagery and mentalarithmetic tasks, Entropy, 22, 2020, 761.
  31. [31] D.L. P´erez, A.L.W. Bokde, and C.M. Kerskens, Complexityanalysis of heartbeat-related signals in brain MRI time seriesas a potential biomarker for ageing and cognitive performance,The European Physical Journal Special Topics, 232, 2023,123–133.
  32. [32] K. Harezlak and P. Kasprowski, Application of time-scaledecomposition of entropy for eye movement analysis, Entropy,22, 2020, 168.
  33. [33] A. Lanat`a, A. Greco, M. Ciardelli, A. Uvelli, E. Fratini, D.Manzoni, E.P. Scilingo, E.L. Santarcangelo, and L. Sebastiani,Linear and non linear measures of pupil size as a function ofhypnotizability, Scientific Reports, 11, 2021, 5196.
  34. [34] A.Y. Meigal, G.G. Miroshnichenko, A.P. Kuzmina, S.M.Rissanen, S.D. Georgiadis, and P.A. Karjalainen, Nonlinearparameters of surface EMG in schizophrenia patients dependon kind of antipsychotic therapy, Frontiers in Physiology, 6,2015, 197.
  35. [35] A.K. Panahi and S. Cho, Prediction of muscle fatigue duringminimally invasive surgery using recurrence quantificationanalysis, Minimally Invasive Surgery, 2016, 2016, 5624630.
  36. [36] N. Furutani, T. Takahashi, N. Naito, T. Maruishi, Y.Yoshimura, C. Hasegawa, T. Hirosawa, and M. Kikuchi,Complexity of body movements during sleep in children withautism spectrum disorder, Entropy, 23, 2021, 418.
  37. [37] M.Y.A. Khanian, S.M.R.H. Golpayegni, and M. Rostami, Anew multi-attractor model for the human posture stabilitysystem aimed to follow self-organized dynamics, Biocyberneticsand Biomedical Engineering, 40, 2020, 162–172.
  38. [38] J. Larson, E. Perkins, T. Oldfather, and M. Zabala, Localdynamic stability of the lower-limb as a means of post-hocinjury classification, PLoS ONE, 16(6), 2021, e0252839.
  39. [39] M. Thanaj, A.J. Chipperfield, and G.F. Clough, Analysisof microvascular blood flow and oxygenation: discriminationbetween two haemodynamic steady states using nonlinearmeasures and multiscale analysis, Computers in Biology andMedicine, 102, 2018, 157–167.
  40. [40] L.S. Riza, C. Bergmeir, F. Herrera, and J.M. Ben´ıtez, FRBS:fuzzy rule-based systems for classification and regression in R,Journal of Statistical Software, 65(6), 2015, 1–30.
  41. [41] F.B. Taher, N.B. Amor, and M. Jallouli, A multisources electricwheelchair control based on EEG signals and fuzzy eye trackingfusion, Control and Intelligent Systems, 44(2), 2016, 67–74.

Important Links:

Go Back