TASK ALLOCATION IN A MULTI-AGENT SYSTEM USING HUMAN-BASED INTERACTION AS AN MDP, 143-151.

Carlos Santibanez and John Kern

References

  1. [1] Y.V. Karteek, I. Kar, and S. Majhi, Consensus of multi-agentsystems using back-tracking and history following algorithms,International Journal of Robotics and Automation, 32(4), 2017,369–378. https://doi.org/10.48550/arXiv.2011.08990
  2. [2] L.M. Li, J. Zhao, and C.J. Yan, Robot-to-humanhandover in a comfortable and friendly manner,Mechatronic Systems and Control, 46(4), 2018, 187–195.http://dx.doi.org/10.2316/Journal.201.2018.4.201-2997
  3. [3] S. Xu, E.S. Ho, and H.P. Shum, A hybrid metaheuristicnavigation algorithm for robot path rolling planning in anunknown environment, Mechatronic Systems and Control,47( 4), 2019, 216–224. http://dx.doi.org/10.2316/J.2019.201-3000
  4. [4] Y. Liau and K. Ryu, Task allocation in human-robotcollaboration (HRC) based on task characteristics and agentcapability for mold assembly, Procedia Manufacturing, 51,2020, 179–189. https://doi.org/10.1016/j.promfg.2020.10.026
  5. [5] A. Casalino, C. Messeri, M. Pozzi, P. Rocco, andD. Prattichizzo, Operator awareness in human–robotcollaboration through wearable vibrotactile feedback, IEEERobotics and Automation Letters, 3(4), 2018, 4289–4296.https://doi.org/10.1109/LRA.2018.2865034
  6. [6] G.C.L. Fletcher, P. McGeorge, R.H. Flin, and R.J. Glavin, Therole of non-technical skills in anaesthesia: A review of currentliterature, British Journal of Anaesthesia, 88(3), 2002,418–429.http://doi.org/10.1093/bja/88.3.418
  7. [7] E. Price, G. Lawless, R. Ludwig, I. Martinovic, H.H. Bulfhoff,M.J. Black, and A. Ahmaad, Deep neural network-basedcooperative visual tracking through multiple micro aerialvehicles, IEEE Robotics and Automation Letters, 3(4), 2018,3193–3200. https://doi.org/10.48550/arXiv.1802.01346
  8. [8] M. Ivanov, O. Sergiyenko, V. Tyrsa, L. Lindner, M. Reyes-Garc´ıa, J. Cesar Rodr´ıguez-Qui˜nonez, W. Flores-Fuentes, J.E.Miranda-Vega, M. Rivas-L´opez, and D. Hern´andez-Balbuena,Data exchange and task of navigation for robotic group,in Machine Vision and Navigation. (Cham: Springer, 2020),389–430. https://doi.org/10.1007/978-3-030-22587-2 13
  9. [9] S. Barns, Smart cities and urban data platforms: Designinginterfaces for smart governance, City, Culture and Society, 12,2018, 5–12. https://doi.org/10.1016/j.ccs.2017.09.006
  10. [10] Z. Jiancheng and Z. Honggen, New key point detectiontechonology under real-time eye tracking, Mecha-tronic Systems and Control, 47(2), 2019, 71–76.http://dx.doi.org/10.2316/J.2019.201-2969
  11. [11] A. Ali, H. Azevedo-Sa, D.M. Tilbury, and L. Robert,Heterogeneous human–robot task allocation based onartificial trust, Scientific Reports, 12(1), 2022, 1–15.https://doi.org/10.1038/s41598-022-19140-5
  12. [12] K.N. Krishnanand and D. Ghose, Formations of minimalistmobile robots using local-templates and spatially distributedinteractions, Robotics and Autonomous Systems, 53(3–4), 2005,194–213. https://doi.org/10.1016/j.robot.2005.09.006
  13. [13] Y. Lin, F. Gao, T. Qin, W. Gao, T. Liu, W. Wu, Z. Yang,and S. Shen, Autonomous aerial navigation using monocularvisual-inertial fusion, Journal of Field Robotics, 35(1), 2018,23–51. https://doi.org/10.1002/rob.21732
  14. [14] M. Elliot, Formula 1 and its contributions to healthcare,https://www.youtube.com/watch?v=ZeMGrHcfRjY&t=2s(accessed Jul. 17, 2022).
  15. [15] B. Wang, L. Yunze, L. Haoxiang, and Y. Wang, Handgesture recognition and motion estimation using the kinectsensor, Mechatronic Systems and Control, 48(1), 2020, 17–24.http://dx.doi.org/10.2316/J.2020.201-0014
  16. [16] M.T. Khan, F.N. Izhar, M.U. Qadir, and C.W. de Silva,Multi-robot cooperation framework based on artificial immunesystem, Control and Intelligent Systems, 43(3), 2015, 159–167.http://dx.doi.org/10.2316/Journal.201.2015.3.201-2705
  17. [17] C. Gaede, F. Ranz, V. Hummel, and W. Echelmeyer, A study onchallenges in the implementation of human–robot collaboration,Journal of Engineering, Management and Operations, 1, 2018,29–39.
  18. [18] H. Nazon and G.A. Kaminka, Redundancy, efficiency androbustness in multi-robot coverage, Proc. IEEE InternationalConf. on Robotics and Automation, Barcelona, 2005, 735–741.http://dx.doi.org/10.1109/ROBOT.2005.1570205
  19. [19] C. Esterwood and L. Robert, Robots and COVID-19: Re-imagining human--robot collaborative work in terms ofreducing risks to essential workers, ROBONOMICS: TheJournal of the Automated Economy, 1(9), 2021, 1–7.https://dx.doi.org/10.2139/ssrn.3767609
  20. [20] S. Choudhury, J.K. Gupta, M.J. Kochenderfer, D.Sadigh, and J.Bohg, Dynamic multi-robot task allocation under uncertaintyand temporal constraints, Autonomous Robots, 46(1), 2022,231–247. https://doi.org/10.1007/s10514-021-10022-9
  21. [21] E. Wiese, P.P. Weis, Y. Bigman, K. Kapsaskis, andK. Gray, It’s a match: Task assignment in human–robot collaboration depends on mind perception, Interna-tional Journal of Social Robotics, 14(1), 2022, 141–148.https://doi.org/10.1007/s12369-021-00771-z
  22. [22] O. Loyola, J. Kern, and C. Urrea, Novel algorithm for agentnavigation based on intrinsic motivation due to boredom,Information Technology and Control, 50 (3), 2021, 485–494.https://doi.org/10.5755/j01.itc.50.3.29242
  23. [23] Z. Butler and D. Rus, Distributed planning and controlfor modular robots with unit-compressible modules, TheInternational Journal of Robotics Research, 22 (9), 2003,699–716. http://dx.doi.org/10.1177/02783649030229002150
  24. [24] L. Cominelli, F. Feri, R. Garofalo, C. Giannetti, M.A.Mel´endez-Jim´enez, A. Greco, M. Nardelli, E.P. Scilingo,and O. Kirchkamp, Promises and trust in human–robot interaction, Scientific Reports, 11(1), 2021, 1–14.https://doi.org/10.1038/s41598-021-88622-9
  25. [25] E. de Visser and R. Parasuraman, Adaptive aiding ofhuman–robot teaming: Effects of imperfect automation onperformance, trust, and workload, Journal of CognitiveEngineering and Decision Making, 5(2), 2011, 209–231.https://doi.org/10.1177/1555343411410160
  26. [26] G. Calhoun, Adaptable (not adaptive) automation: Forefrontof human-automation teaming, Human Factors, 64(2), 2022,269–277. https://doi.org/10.1177/00187208211037457
  27. [27] I. Tkach and S. Amador, Towards addressing dynamicmulti-agent task allocation in law enforcement, AutonomousAgents and Multi-Agent Systems, 35(1), 2021, 1–18.https://doi.org/10.1007/s10458-021-09494-x
  28. [28] R. Sutton and A. Barto, Reinforcement learning: Anintroduction, 2nd ed. (Cambridge, MA: MIT Press, 2018).
  29. [29] A. Che, V. Kats, and E. Levner, An efficient bicriteriaalgorithm for stable robotic flow shop scheduling, EuropeanJournal of Operational Research, 260 ( 3), 2017, 964–971.https://doi.org/10.1016/j.ejor.2017.01.033
  30. [30] E. Gonz´alez-Neira, J. Montoya-Torres, and D. Barrera, Flow-shop scheduling problem under uncertainties: Review andtrends, International Journal of Industrial Engineering Compu-tations, 8(4), 2017, 399–426. doi.org/10.5267/j.ijiec.2017.2.001
  31. [31] E. Boyarski, A. Felner, R. Stern, G. Sharon, O. Betzalel, D.Tolpin, and E. Shimony, ICBS: Improved conflict-based searchalgorithm for multi-agent pathfinding, Proc. 24th InternationalJoint Conf. on Artificial Intelligence, New York, NY, 2015,740–746.
  32. [32] C. Zhang, W. Song, Z. Cao, J. Zhang, P.S. Tan, and X.Chi, Learning to dispatch for job shop scheduling via deepreinforcement learning, Proc. 34th Conf. on Neural InformationProcessing Systems (NeurIPS), Vancouver, BC, Canada, 2020,1621–1632. https://doi.org/10.48550/arXiv.2010.12367
  33. [33] U. Yayan and A. Yazici, Reliability-based multi-robot routineplanning, International Journal of Robotics and Automation,34(3), 2019, 1–7. http://doi.org/10.2316/j.2019.206-5291
  34. [34] K. Catchpole, M.R. De Leval, A. McEwan, N. Pigoot, M.J.Elliott, A. McQuillan, C. MacDonald, and A.J. Goldman,Patient handover from surgery to intensive care: Usingformula 1 pit-stop and aviation models to improve safetyand quality, Pediatric Anesthesia, 17(5), 2007, 470–478.https://doi.org/10.1111/j.1460-9592.2006.02239.x
  35. [35] M. Raessa, J.C. Chen, W. Wan, and K. Harada,Human-in-the-loop robotic manipulation planning forcollaborative assembly, IEEE Transactions on AutomationScience and Engineering, 17(4), 2020, 1800–1813.https://doi.org/10.1109/TASE.2020.2978917
  36. [36] S. Daniluk and M. Rezam, An advice mechanismfor heterogenous robot teams, International Journalof Robotics and Automation, 35(1), 2020, 53–68,http://dx.doi.org/10.2316/J.2020.206-0166
  37. [37] N. Shao and Z. Guo, Distributed containment control formulti-robot system based on Hamilton and Wavelet network,Mechatronic Systems and Control, 48 (1), 2020, 65–71.http://dx.doi.org/10.2316/J.2020.201-0035
  38. [38] A. Kumar, R. Sharman, and P. Varshney, Lyapunov fuzzyMarkov game controller for two link robotic manipulator,Journal of Intelligent & Fuzzy Systems, 34(3), 2018, 1479–1490.http://dx.doi.org/ 10.3233/JIFS-169443
  39. [39] P. Zhao, F. Zhu, Q. Liu, and X. Ling, A stable actor-critic algorithm for solving robotic tasks with multipleconstraints, Frontiers of Computer Science, 17(4),2023, 174328,https://doi.org/10.1007/s11704-022-1612-9
  40. [40] A. Wachi and Y. Sui, Safe reinforcement learning inconstrained Markov decision processes, Proc. 37th Inter-national Conf. on Machine Learning, 2020, 9797–9806.https://doi.org/10.48550/arXiv.2008.06626
  41. [41] S. Xiao, L. Guo, Z. Jiang, L. Lv, Y. Chen, J. Zhu, and S.Yang, Model-based constrained MDP for budget allocation insequential incentive marketing, Proc. 28th ACM InternationalConf. on Information and Knowledge Management, 2019, 971-980. https://doi.org/10.1145/3357384.3358031
  42. [42] A. Kumnar, Reinforcement learning: Application andadvances towards stable control strategies, Mecha-tronic Systems and Control, 51(1), 2023, 53–57.http://dx.doi.org/10.2316/J.2023.201-0347
  43. [43] Q. Lu, Y. Chen, X. Qi, and L. Liu, Improved particle swarmalgorithm for cooperative multi-task allocation of heterogeneousUAVs, Mechatronic Systems and Control, 51(1), 2023, 42–52.http://dx.doi.org/10 .2316/J.2023.201-0326
  44. [44] R. Xia, S. Gao, and D. Zhao, A terminal sliding modelearning control for a class of uncertain non-linear systems,Mechatronic Systems and Control, 50 (2), 2022, 87–95.http://dx.doi.org/10.2316/J.2022.201-0266
  45. [45] H. Chen and J. Ye, Trajectory tracking control systemof wheeled mobile robot based on PID feed-forward,Mechatronic Systems and Control, 50(2), 2022, 109–114.http://dx.doi.org/10.2316/J.2022.201-0208
  46. [46] S. Murali, L. K, and R. George, Path following and flightcharacteristics evaluation of trajectory tracking algorithms inUAV navigation, Mechatronic Systems and Control, 50(1),2022, 22–27. http://dx.doi.org/10.2316/J.2022.201-0218
  47. [47] G. Shao, Intelligent vehicle control system based oncloud computing and Internet of Things, Mecha-tronic Systems and Control, 49(4), 2021, 245–250.http://dx.doi.org/10.2316/J.2021.201-0207

Important Links:

Go Back