A RECURSIVE ALGORITHM FOR SEGMENTATION OF DEGRADED DEVANAGARI SCRIPT, 133-142. SI

Sobia Habib, Manoj K. Shukla, and Rajiv Kapoor

References

  1. [1] J. Zou and H. Zhang, New key point detection technologyunder real-time eye tracking, Mechatronic Systems and Control,47(2), 2019, 71–76.
  2. [2] M. Li and Y. Wang, Vision-based carpet similarity inspectionusing deep learning and genetic algorithms, MechatronicSystems and Control, 49(3), 2021, 157.
  3. [3] A.J. Kant and A.J. Vyavahare, Devanagari OCR usingprojection profile segmentation method, InternationalResearch Journal of Engineering and Technology, 3(7), 2016,132–134.
  4. [4] L. Zheng, A.H. Hassin, and X. Tang, A new algorithmfor machine printed Arabic character segmentation, Pat-tern Recognition Letters, 25(15), 2004, 1723–1729, doi:10.1016/j.patrec.2004.06.015.
  5. [5] M.K. Jindal, R.K. Sharma, and G.S. Lehal, On segmentation oftouching characters and overlapping lines in degraded printedGurmukhi script, International Journal of Image and Graphics,9(3), 2009, 321–353.
  6. [6] P.K. Sengar and V. Kumar, Segmentation of printed text inDevanagari script and Gurmukhi script, International Journalof Computer Applications, 3(8), 2010, 30–33.
  7. [7] A.D. Shinde and Y.H. Dandawate, Character segmentationtechnique for printed and handwritten Devanagari script with-out extraction of Shirorekha, ADBU Journal of EngineeringTechnology, 9(2), 2020.
  8. [8] J. Tan, J.H. Lai, C.D. Wang, W.X. Wang, and X.X. Zuo,A new handwritten character segmentation method based onnonlinear clustering, Neurocomputing, 89, 2012, 213–219.
  9. [9] S.S. Pattanayak, S.K. Pradhan, and R.C. Mallik, Anefficient algorithm to find the height of a text lineand overcome overlapped and broken line problem duringsegmentation, International Journal of Advanced ComputerScience and Applications, 10(12), 2019, 537–541, doi:10.14569/ijacsa.2019.0101271.141
  10. [10] P. Vithlani and C.K.K.C.K. Kumbharana, Structural andstatistical feature extraction methods for character and digitrecognition, International Journal of Computer Applications,120(24), 2015, 43–47, doi: 10.5120/21413-4451.
  11. [11] M. Ye, Z. Yi, and K.K. Tan, A robust and globally convergentPCA learning algorithm, Control & Intelligent Systems, 35(2),2007, 119–125.
  12. [12] V. Bansal and R.M.K. Sinha, Segmentation of touching andfused Devanagari characters, Pattern recognition, 35(4), 2002,875–893.
  13. [13] V.G.S. Kompalli and S. Setlur, Devanagari OCR using arecognition driven segmentation framework and stochasticlanguage models, International Journal on Document Analysisand Recognition, 12, 2009, 123–138.
  14. [14] A.S. Kavitha, P. Shivakumara, G.H. Kumar, and T. Lu, Anew watershed model-based system for character segmentationin degraded text lines, AEU - International Journal ofElectronics and Communications, 71, Jan. 2017, 45–52, doi:10.1016/J.AEUE.2016.11.007.
  15. [15] S.B. Dhok and P. Sahare, Multilingual character segmentationand recognition schemes for Indian document images, IEEEAccess, 6, 2018, 10603–10617.
  16. [16] M. Kumar, S.R. Narang, and M.K. Jindal, Drop flow method:an iterative algorithm for complete segmentation of Devanagariancient manuscripts, Multimedia Tools and Applications, 78,2019, 23255–23280.
  17. [17] R.K. Sarvadevabhatla, A. Dwivedi, and R. Saluja, An OCRfor classical Indic documents containing arbitrarily long words,in Proc. IEEE/CVF Conf. on Computer Vision and PatternRecognition Workshops, Seattle, WA, 2020, 2386–2393.
  18. [18] S.R. Narang, M. Kumar, and M.K. Jindal, DeepNetDevanagari:A deep learning model for Devanagari ancient characterrecognition, Multimedia Tools and Applications, 80, 2021,20671–20686.
  19. [19] M.K. Kaur, R. Pal, and M.K. Jindal, TxtLineSeg: Text linesegmentation of unconstrained printed text in Devanagariscript, in Computational methods and data engineering.(Singapore: Springer, 2021).
  20. [20] R. Ghosh and A. Jindal, Text line segmentation inIndian ancient handwritten documents using faster R-CNN,Multimedia Tools and Applications, 82, 2022, 10703–10722.
  21. [21] R. Jayadevan, S.R. Kolhe, P.M. Patil, and U. Pal, Offlinerecognition of Devanagari script: A survey, IEEE Transactionson Systems, Man, and Cybernetics, Part C (Applications andReviews), 41(6), 2011, 782–796.
  22. [22] Y.S. Halabi, Z. Sa, F. Hamdan, and K.H. Yousef, Modelingadaptive degraded document image binarization and opticalcharacter system, European Journal of Scientific Research,28(1), 2009, 14–32.
  23. [23] A.R. Abdel-Dayem, A.K. Hamou, and M.R. El-Sakka, Noveladaptive filtering for salt-and-pepper noise removal from binarydocument images, Proc. International Conf. Image Analysisand Recognition, Porto, 2004, 191–199.
  24. [24] D. Kumar and D. Singh, Modified approach of hough transformfor skew detection and correction in documented images,International Journal of Research in Computer Science, 2(3),2012, 37–40.
  25. [25] P. Sahare and S.B. Dhok, Robust character segmentation andrecognition schemes for multilingual Indian document images,IETE Technical Review, 36(2), 2019, 209–222.
  26. [26] P. Sahare, J.V. Tembhurne, M.R. Parate, T. Diwan, andS.B. Dhok, Script independent text segmentation of documentimages using graph network based shortest path scheme,International Journal of Information Technology, 15, 2023,2247–2261.
  27. [27] I. Ahmad, X. Wang, R. Li, M. Ahmed, and R. Ullah, Line andLigature segmentation of Urdu Nastaleeq text, IEEE Access,5, 2017, 10924–10940.
  28. [28] O.V.R. Murthy and M. Hanmandlu, Zoning based Devanagaricharacter recognition, International Journal of ComputerApplications, 27(4), 2011, 21–25.

Important Links:

Go Back