DESIGN AND EXPERIMENT OF A CONTINUOUSLY VARIABLE-STIFFNESS WRIST FOR RELIABLE ROBOT ASSEMBLY UNDER MISALIGNMENT, 334-343.

Du Xu and Xinjiang Lu

References

  1. [1] M. Suresh, N.K. Mathew, S.P. Rohith, R. Aishwarya, and K.Ramanathan, Assembly automation—An efficient approach tofind optimal parameters for part feeders, International Journalof Robotics and Automation, 206, 2021, 246–255.
  2. [2] D.J. Giblin, Y. Liu, and K. Kazerounian, Target trackingrobotic manipulation theories applied to force/position controlin peg-in-hole assembly tasks, International Journal of Roboticsand Automation, 23, 2008, 49–55.
  3. [3] B. Zhao, L. Zeng, Z. Wu, and K. Xu, A continuum manipulatorfor continuously variable stiffness and its stiffness controlformulation, Mechanism and Machine Theory, 149, 2020,103746.
  4. [4] C. Vidrios-Serrano, M. Mendoza, I. Bonilla, and B. Maldonado-Fregoso, A generalized vision-based stiffness controller for robotmanipulators with bounded inputs, International Journal ofControl, Automation, and Systems, 19, 2021, 548–561.
  5. [5] Z. Chen, N.Y. Lii, T. Wimb¨ock, S. Fan, H. Liu, and A.Albu-Sch¨affer, Experimental analysis on spatial and cartesianimpedance control for the dexterous DLR/HIT II hand,International Journal of Robotics and Automation, 29(1), 2014,1–12.
  6. [6] M. Hamedani, M. Zekri, and F. Sheikholeslam, Adaptiveimpedance control of uncertain robot manipulators withsaturation effect based on dynamic surface technique and self-recurrent wavelet neural networks, Robotica, 37, 2019, 161–188.
  7. [7] L. Liu, S. Leonhardt, C. Ngo, and B.J.E. Misgeld, Impedance-controlled variable stiffness actuator for lower limb robotapplications, IEEE Transactions on Automation Science andEngineering, 17(2), 2020, 991–1004.
  8. [8] J. Yang, Y. Zeng, and Y. Yin, Adaptive robust controlwith extended state observer for human–robot impedance,International Journal of Robotics and Automation, 106, 2020,206-0022.
  9. [9] D.J. Giblin, Y. Liu, and K. Kazerounian, Target trackingrobotic manipulation theories applied to force/position controlin peg-in-hole assembly tasks, International Journal of Roboticsand Automation, 23, 2008, 49–55.
  10. [10] H. Chaudhary, V. Panwar, R. Prasad, and N. Sukavanam,Adaptive neuro fuzzy based hybrid force/position controlfor an industrial robot manipulator, Journal of IntelligentManufacturing, 27, 2016, 1299–1308.
  11. [11] C. Baspinar, Robust position/force control of constrainedcompliant joint robots with constraint uncertainties, Journalof Intelligent & Robotic Systems, 100, 2020, 945–954.
  12. [12] H. Bolandi and A.F. Ehyaei, Position/force control of adual cooperative manipulator system based on a singularlyperturbed dynamic model, International Journal of Roboticsand Automation, 1, 2012, 206-3516.
  13. [13] L. Clark, B. Shirinzadeh, Y. Tian, and B. Yao, Develop-ment of a passive compliant mechanism for measurementof micro/nanoscale planar 3-DOF motions, IEEE/ASMETransactions on Mechatronics, 21(3), 2016, 1222–1232.
  14. [14] D. Xing, F. Liu, S. Liu, and D. Xu, Efficient insertion of partiallycompliant objects in precision assembly, IEEE Transactionson Automation Science and Engineering, 16(2), 2019,706–715.
  15. [15] D.I. Park, H. Kim, C. Park, T. Choi, H. Do, B. Kim, and J.Park, Automatic assembly method with the passive compliantdevice, Proc.11th Asian Control Conf., Gold Coast, QLD, Dec.2017, 347–348.
  16. [16] W. Chen, X. Li, S.J. Teo, W. Lin, and K.H. Low, A compliantfixtureless assembly of T-joint frame structures, Proc. Int.Conf. on Intelligent Robots and Systems, Hamburg, 2015,2360–2365.
  17. [17] R.H. Sturges Jr. and S. Laowattana, Design of an orthogonalcompliance for polygonal peg insertion, ASME Journal ofMechanical Design, 118(1), 1996, 106–114.
  18. [18] F. Zhao and P.S.Y. Wu, VRCC: A variable remote centercompliance device, Mechatronics, 8(6), 1998, 657–672.
  19. [19] S. Lee, Development of a new variable remote center compliance(VRCC) with modified elastomer shear pad (ESP) for robotassembly, IEEE Transactions on Automation Science andEngineering, 2(2), 2005, 193–197.
  20. [20] N. Ciblak and H. Lipkin, Design and analysis of remote centerof compliance structures, Journal of Robotic Systems, 20(8),2013, 415–427.
  21. [21] W. Haskiya, H. Qiao, and J.A.G. Knight, A passive compliantwrist for chamfer-less peg-in-hole assembly operation fromvertical and horizontal directions, Proceedings of the Instituteof Mechanical Engineers, 212, 1998, 473–478.
  22. [22] W. Haskiya, K. Maycock, and J. Knight, Robotic assembly:Chamfer-less peg-hole assembly, Robotica, 17, 1999, 621–634.
  23. [23] S. Lee, Shear control of elastomer shear pads for variableremote center compliance, Advanced Robotics, 23(1–2), 2012,227–237.
  24. [24] H.S. Kim, D.I. Park, C.H. Park, B.-I. Kim, H.M. Do, T.Y.Choi, D.-H. Kim, and J. Kyung, Variable passive compliancedevice for robotic assembly, Journal of the Korean Society ofManufacturing Technology Engineers, 25(6), 2016, 517–521.
  25. [25] K. Kronander and A. Billard, Stability considerations forvariable impedance control, IEEE Transactions on Robotics,32(5), 2016, 1298–1305.
  26. [26] S. Liu, D. Xing, Y. Li, J. Zhang, and D. Xu, Robust insertioncontrol for precision assembly with passive compliance combin-ing vision and force information, IEEE/ASME Transactionson Mechatronics, 24(5), 2019, 1974–1985.
  27. [27] D. Xing, X. Liu, F. Liu, and D. Xu., Efficient insertion strategyfor precision assembly with uncertainties using a passivemechanism, IEEE Transactions on Industrial Informatics,17(2), Feb. 2021, 1263–1273.
  28. [28] G. Chen, Z. Zhang, L. Kong, and H. Wang, Analysis andvalidation of a compliant planar two degrees-of-freedom parallelmanipulator with structural passive compliance, ASME Journalof Mechanisms and Robotics, 12(1), Oct. 2019, 11011.
  29. [29] H. Park, J. Park, D.-H. Lee, J.-H. Park, M.-H. Baeg, and J.-H.Bae, Compliance-based robotic peg-in-hole assembly strategywithout force feedback, IEEE Transactions on IndustrialElectronics, 64(8), 2017, 6299–6309.
  30. [30] N. Pitchandi, S.P. Subramanian, and M. Irulappan, Insertionforce analysis of compliantly supported peg-in-hole assembly,Assembly Automation, 37(3), 2017, 285–295.
  31. [31] B. Bakys, J. Baskutien, and J. Vys, Experimental researchof vibratory alignment using passive compliance devices,Mechanika, 20(2), 2014, 165+.
  32. [32] Z. Hua, X. Rong, Y. Sun, Y. Li, H. Chai, and C. Wang, Anovel passive compliance method for hydraulic servo actuatorapplied on quadruped robots, International Journal of Roboticsand Automation, 37(1), 2020, 76–87.
  33. [33] W. Dong, W. Liping, and W. Jun, Physics-based mechatronicsmodeling and application of an industrial-grade parallel toolhead, Mechanical Systems and Signal Processing, 148, 2021,107158.
  34. [34] P. Rossi, R. Simoni, and A.P. Carboni, Analysis of a 4-DOF3T1R parallel robot for machining applications: A stiffnessstudy, in Advances in industrial machines and mechanisms.(Singapore: Springer, 2021).342

Important Links:

Go Back