VISUAL SERVOING IN VIRTUALISED ENVIRONMENTS BASED ON OPTICAL FLOW LEARNING AND CONSTRAINED OPTIMISATION, 1-10.

Takuya Iwasaki, Solvi Arnold, and Kimitoshi Yamazaki

References

  1. [1] L.E. Weiss, A.C. Sanderson, and C.P. Neuman, Dynamic sensor-based control of robots with visual feedback, IEEE Journal ofRobotics and Automation, RA-3(5), 1987, 404–417.
  2. [2] B. Espiau; F. Chaumette, and P. Rives, A new approach tovisual servoing in robotics, IEEE Transactions on Roboticsand Automation, 8(3), 1992, 313–326.
  3. [3] D. Kragic and H. Christensen, Robust visual servoing, TheInternational Journal of Robotics Research 22(10–11), 2003,923–939. doi:10.1177/0278364903022100099
  4. [4] F. Chaumette, and S. Hutchinson, Visual servo control. PartI. Basic approaches, IEEE Robotics & Automation Magazine,13(4), 2006, 82–90.
  5. [5] J.P. Bandera, J.A. Rodr´ıguez, L. Molina-Tanco, and A.Bandera, A survey of vision-based architectures for robotlearning by imitation, International Journal of HumanoidRobotics, 9(1), 2012, 1250006.
  6. [6] S. Benhimane, and E. Malism, Homography-based 2D visualtracking and servoing, The International Journal of RoboticsResearch, 26(7), 2007, 661–676.
  7. [7] G. Silveira, and E. Malis, Direct visual servoing: Vision-basedestimation and control using only nonmetric information, IEEETransactions on Robotics, 28(4), 2012, 974–980.
  8. [8] Y. Iwatani, K. Watanabe, and K. Hashimoto: Visual trackingwith occlusion handling for visual servo control, Proc. of IEEEInt’l Conf. on Robotics and Automation, Pasadena, CA, 2008,101–106.
  9. [9] G. Chesi, K. Hashimoto, D. Prattichizzo, and A. Vicino,Keeping features in the field of view in eye-in-hand visualservoing: A switching approach, IEEE Trans. on Robotics,20(5), 2004, 908–913.
  10. [10] M. Bakthavatchalam, F. Chaumette, and E. Marchand,Photometric moments: New promising candidates for visualservoing, Proc. IEEE Int. Conf. on Robotics and Automa-tion, Karlsruhe, 2013, 5241–5246, doi: 10.1109/ICRA.2013.6631326.
  11. [11] F. Castelli, S. Michieletto, S. Ghidoni, and E. Pagello. Amachine learning-based visual servoing approach for fast robotcontrol in industrial setting, International Journal of AdvancedRobotic Systems, 14(6), 2017. doi:10.1177/1729881417738884
  12. [12] D.J. Agravante, G. Claudio, F. Spindler, and F.Chaumette, Visual servoing in an optimization frameworkfor the whole-body control of humanoid robots, IEEERobotics and Automation Letters, 2(2), 2017, 608–615,doi: 10.1109/LRA.2016.2645512.
  13. [13] A. Vakanski, F. Janabi-Sharifi, and I. Mantegh, An image-basedtrajectory planning approach for robust robot programming bydemonstration, Robotics and Autonomous Systems, 98, 2017,241–257.
  14. [14] F. Chaumette, and S. Hutchinson, Visual servo control, PartI: Basic approaches, IEEE Robotics & Automation Magazine,vol. 13, no. 4, pp. 82–90, Dec. 2006.
  15. [15] Q. Bateux, E. Marchand, J. Leitner, F. Chaumette, and P.Corke, Training deep neural networks for visual servoing, Proc.of IEEE Int. Conf. on Robotics and Automation, Brisbane,QLD, 2018, pp. 3307–3314.
  16. [16] F. Tokuda, S. Arai, and K. Kosuge: Convolutionalneural network-based visual servoing for eye-to-handmanipulator, IEEE Access, 9, 2021, 91820–91835, doi:10.1109/ACCESS.2021.3091737.
  17. [17] S. Levine, P. Pastor, A. Krizhevsky, and D. Quillen, Learninghand-eye coordination for robotic grasping with deep learningand large-scale data collection, The International Journal ofRobotics Research, 37(4–5), 2018, 421–436.
  18. [18] S. Iqbal, J. Tremblay, T. To, J. Cheng, E. Leitch, A.Campbell, K. Leung, D. McKay, and S. Birchfield, Towardsim-to-real directional semantic grasping, 2019, arXiv preprintarXiv:1909.02075.
  19. [19] T. Kawagoshi, S. Arnold, and K. Yamazaki, Visual servoingusing virtual space for both learning and task execution, Proc.of the 2021 IEEE/SICE International Symposium on SystemIntegration, Fukushima, 2021, 292–297.
  20. [20] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazırbas,V. Golkov, P. van der Smagt, D. Cremers, and T. Brox,Flownet: Learning optical flow with convolutional networks,Proc. IEEE International Conf. on Computer Vision, Santiago,2015, 2758–2766.
  21. [21] Gazebo: http://gazebosim.org/Point Cloud Library,https://pointclouds.org (accessed Nov. 14, 2022).
  22. [22] Tensorflow, https://www.tensorflow.org/ (accessed Nov. 14,2022).
  23. [23] CVXOPT, https://cvxopt.org/ (accessed Nov. 14, 2022).
  24. [24] A. Yamaji, GSS generator: A software to distribute manypoints with equal intervals on an unit sphere, Geoinformatics,12(1), 2001, 3–12.
  25. [25] D. Bolya, C. Zhou, F. Xiao, and Y.J. Lee: YOLACT: Real-TimeInstance Segmentation, IEEE/CVF International Conferenceon Computer Vision, 2019, 9156–9165.
  26. [26] P. Katara, Y.V.S Harish, H. Pandya, A. Gupta, A. MehdiSanchawala, G. Kumar, B. Bhowmick, and K. MadhavaKrishna, DeepMPCVS: Deep model predictive control forvisual servoing, Proc. 4th Annual Conf. on Robot Learning,Cambridge, MA,, 2020, 1–10.
  27. [27] E. Godinho Ribeiro, R. de Queiroz Mendes, and V. Grassi,Real-time deep learning approach to visual servo control andgrasp detection for autonomous robotic manipulation, Roboticsand Autonomous Systems, 139, 2021, 103757.

Important Links:

Go Back