Prabhat Kumar Ranjan and Sarode Shiva Kumar


  1. [1] R.O. Caceres and I. Barbi, A boost DC–AC converter: Analysis,design, and experimentation, IEEE Transactions on PowerElectronics, 14(1), 1999, 134–141.
  2. [2] T.K.S. Freddy and N.A. Rahim, Photovoltaic invertertopologies for grid integration applications, in Advances inSolar Photovoltaic Power Plants. (Berlin: Springer, 2016),13–42.
  3. [3] J.M.A. Myrzik, Novel inverter topologies for single-phasestand-alone or grid-connected photovoltaic systems, Proc. 4thIEEE Int. Conf. Power Electronics and Drive Systems, vol. 1.Denpasar, 2001, 103–108.
  4. [4] P. Sanchis, A. Ursaea, E. Gubia, and L. Marroyo, Boost DC–AC inverter: A new control strategy, IEEE Transaction onPower Electronics, 20(2), 2005, 343–353.
  5. [5] T.D. Do, V.Q. Leu, Y.-S. Choi, H.H. Choi, and J.-W. Jung,An adaptive voltage control strategy of three phase inverter forstandalone distributed generation systems, IEEE Transactionson Industrial Electronics, 60(12), 2013, 5660–5672.
  6. [6] M.E. Ibrahim, A.S. Mansour, and A.M. Abd-Elhady, Anovel single-stage single-phase buck–boost inverter, ElectricalEngineering, 99, 2017, 345–356.
  7. [7] P. Sanchis Gurpide, O. Alonso Sadaba, L. Marroyo Palomo, T.Meynard, and E. Lefeuvre, A new control strategy for the boostDC–AC inverter, Proc. IEEE 32nd Annual Power ElectronicsSpecialists Conf., vol. 2. Vancouver, BC, Jun. 2001, 974–979.
  8. [8] A. Sargolzaei, M. Jamei, K. Yen, A.I. Sarwat, and M.Abdelghani, Active/reactive power control of three phase gridconnected current source boost inverter using particle swarmoptimization, in Progress in Systems Engineering. (Cham:Springer, 2015), 141–146.
  9. [9] A. Vinod and A.K. Sinha, Adaptive control topology basedoptimization of wind power dispatch, International Journal onElectrical Engineering & Informatics, 10(4), 2018, 615–630.
  10. [10] G.-R. Zhu, C.-Y. Xiao, H.-R. Wang, and S.-C. Tan, Closedloop control of boost inverter, IET Power Electronics, 9(9),2016, 1808–1818.
  11. [11] R.O. C´aceres and I. Barbi, Sliding mode controller for theboost inverter, Proc. 5th IEEE Int. Power Electronics CongressTechnical Proceedings (CIEP), Cuernavaca, 1996, 247–252.
  12. [12] M.H. Rashid, Ed., Power electronics handbook. (Oxford:Butterworth-Heinemann, 2017).
  13. [13] R.-J. Wai, Y.-F. Lin, and Y.-K. Liu, Design of adaptive fuzzy-neural-network control for a single-stage boost inverter, IEEETransactions on Power Electronics, 30(12), 2015, 7282–7298.
  14. [14] S.M. Ayob, N.A. Azli, and Z. Salam, A simple and fast PI-fuzzycontroller for PWM DC/AC converters, Control and IntelligentSystems, 38(3), 2010, 48.
  15. [15] A. Merabet, M. Ouhrouche, and R.T. Bui, Neural generalizedpredictive control with reference control model for an inductionmotor drive, Control and Intelligent Systems, 36(2), 2008,144–152.
  16. [16] D.B.W.Abeywardana, B. Hredzak, and V.G. Agelidis, A rule-based controller to mitigate DC-side second-order harmoniccurrent in a single-phase boost inverter, IEEE Transactionson Power Electronics, 31(2), 2016, 1665–1679.
  17. [17] Z.K. Xue and S.Y. Li, Multi-model modelling and predictivecontrol based on local model networks, Mechatronic Systemsand Control, 34(2), 2006, 105.
  18. [18] H.S. Barbosa, R.K.H. Galvao, and T. Yoneyama, Modelpredictive control of linear systems subject to actuatordegradation, Control and Intelligent Systems, 40(4), 2012, 212.
  19. [19] T. Zou, X. Wang, S.Y. Li, and Q.M. Zhu, A mixedlogic enhanced multi-model switching predictive controller fornonlinear dynamic process, Control and Intelligent Systems,35(2), 2007, 154–161.
  20. [20] Y. Lv, N. Xie, and K. Wang, Model predictive control for singlephase inverters, in Communication Systems and InformationTechnology (EEIC), 4. (Berlin: Springer, 2011), 419–425.
  21. [21] O. Abdel-Rahim, H. Funato, and J. Haruna, Gird-connectedboost inverter for low-power PV applications with modelpredictive control, The Journal of Engineering, 7, 2017,318–326.
  22. [22] Y. Shan, J. Hu, Z. Li, and J.M. Guerrero, A model predictivecontrol for renewable energy based AC microgrids withoutany PID regulators, IEEE Transactions on Power Electronics,33(11), 2018, 9122–9126.
  23. [23] D. Lopez, F. Flores-Bahamonde, S. Kouro, M.A. Perez, A.M.Llor, and L. Martinez-Salamero, Predictive control of a single-stage boost DC–AC photovoltaic microinverter, Proc. IECON42nd Annual Conf. IEEE Industrial Electronics Society,Florence, 2016, 6746–6751.
  24. [24] P. Li, R. Li, S. Cai, and Y. Hong, Intermediate voltageregulation for total harmonic distortion reduction of two-stageinverters under model predictive control scheme via observers,IEEE Access, 7, 2019, 51940–51951.
  25. [25] C. Liu, L. Lei, Q. Chen, L. Zhang, and S. Quan, Modelpredictive control of single phase grid-connected inverter withLC filter, Proc. 32nd Youth Academic Annual Conf. ChineseAssociation of Automation (YAC), Hefei, 2017, 115–119.
  26. [26] R. Teodorescu, F. Blaabjerg, U. Borup, and M. Liserre, A newcontrol structure for grid-connected LCL PV inverters withzero steady-state error and selective harmonic compensation,Proc. 19th Annual IEEE Applied Power Electronics Conf. andExposition, vol. 1. Anaheim, CA, 2004, 580–586.
  27. [27] K. Rameshkumar, A. Sakthivel, R. Kanagavel, S. Aruchamy,P. Vijayakumar, and A. Senthilkumar, Performance analysisof model predictive control for voltage source inverter, Proc.Int. Conf. on Green Computing Communication and ElectricalEngineering, Coimbatore, 2014, 1–5.
  28. [28] E. Zangeneh Bighash, S. Sadeghzadeh, E. Ebrahimzadeh, Y.Yang, and F. Blaabjerg, A novel model predictive controlfor single-phase grid-connected photovoltaic inverters, Proc.IEEE Energy Conversion Congress and Exposition (ECCE),Cincinnati, OH, 2017, 461–467.
  29. [29] O. Matiushkin, O. Husev, J. Rodriguez, H. Young, and I.Roasto, Feasibility study of model predictive control for grid-connected twisted buck–boost inverter, IEEE Transactions onIndustrial Electronics, 69(3), 2022, 2488–2499.

Important Links:

Go Back