STANDARDS OF MEASUREMENT AND DEVELOPMENTAL CHALLENGES IN PATH PLANNING FOR MANIPULATOR, 208-217.

Lianhao Zhang, Zhenyu Liu, and Xiaohong Qin

References

  1. [1] W. Zhang and S. Fu, Time-optimal trajectory planning ofdulcimer music robot based on PSO algorithm, Proc. ChineseControl and Decision Conf. (CCDC), Hefei, 2020, 4769–4774.
  2. [2] M. Ning, Implementation of PSO in MATLAB: Myoon-tyee/PSO, https://github.com/Myoontyee/PSO (accessedDec. 23, 2018).
  3. [3] D. Kim, Y. Kwon, and S.-E. Yoon, Dancing PRM:Simultaneous planning of sampling and optimization withconfiguration free space approximation, Proc. IEEE Int. Conf.on Robotics and Automation (ICRA), Brisbane, QLD, 2018,7071–7078.
  4. [4] Q. Yu, G. Wang, T. Ren, L. Wu, and K. Chen, An efficientalgorithm for inverse kinematics of robots with non-sphericalwrist, International Journal of Robotics and Automation, 33(1),2018, 45–52.
  5. [5] G. Kanagaraj, S. Masthan, and V.F. Yu, Inverse kinematicsolution of obstacle avoidance redundant robot manipulatorby bat algorithms, International Journal of Robotics andAutomation, 36(1), 2021, 18–26.
  6. [6] L. Chen and H. Sun, Picking path optimization of mobilerobotic arm based on differential evolution and improved Aalgorithm, IEEE Access, 9, 2021, 154413–154422.
  7. [7] J. Huh and D.D. Lee, Efficient sampling with Q-learningto guide rapidly exploring random trees, IEEE Robotics andAutomation Letters, 3(4), 2018, 3868–3875.
  8. [8] F. Li, Z. Huang, and L. Xu, Path planning of 6-DOFvenipuncture robot arm based on improved A-star and collisiondetection algorithms, Proc. IEEE Int. Conf. on Robotics andBiomimetics (ROBIO), Dali, 2019, 2971–2976.
  9. [9] N. Larkin, A. Short, Z. Pan, and S.V. Duin, Task space motionplanning decomposition, Proc. IEEE Int. Conf. on Roboticsand Automation (ICRA), Brisbane, QLD, 2018, 1688–1694.
  10. [10] C. Park, J.S. Park, and D. Manocha, Fast and boundedprobabilistic collision detection for high-DOF trajectoryplanning in dynamic environments, IEEE Transactions onAutomation Science and Engineering, 15(3), 2018, 980–991.
  11. [11] D. Wang, L. Wang, J. Wu, and H. Ye, An experimentalstudy on the dynamics calibration of a 3-DOF parallel toolhead, IEEE/ASME Transactions on Mechatronics, 24(6), 2019,2931-2941.
  12. [12] M. Ji, L. Zhang, and S.A. Wang, A path planning approachbased on Q-learning for robot arm, Proc. Int. Conf. on Roboticsand Automation Sciences (ICRAS), Wuhan, 2019, 15–19.
  13. [13] J. Zhou, Z. Li, G. Lv, and E. Liu, Fuzzy logic-based adaptivetracking control of manipulator actuated by DC motor,International Journal of Robotics and Automation, 36(3), 2021,196–203.
  14. [14] J. Ling, F. Zhao, M. Ming, and X. Xiao, Precision contourtracking using feedback-feedforward integrated control for a2-DOF manipulation system, International Journal of Roboticsand Automation, 33(3), 2018, 276–283.
  15. [15] J. Zhao, S. Wang, A. Jiang, J. Xiao, and B. Wang, Trajectoryplanning of 6-DOF manipulator based on Gaussian processregression method, International Journal of Robotics andAutomation, 35(3), 2020, 209–220.
  16. [16] T. Wang and D. Guo, Investigation on a new discrete-time synchronous motion planning scheme for dual-arm robotsystems, IEEE Access, 8, 2020, 201545–201554.
  17. [17] M. Madhu, S. Kumar, S. Shriram, and R. Vignesh, ACCD-based inverse kinematics approach using Frenet–Serretparameterization for SHR manipulators, International Journalof Robotics and Automation, 36(3), 2021, 140–147.
  18. [18] A. Sepehri and A. Moghaddam, A motion planning algorithmfor redundant manipulators using rapidly exploring randomizedtrees and artificial potential fields, IEEE Access, 9, 2021,26059–26070.
  19. [19] T. Raja Prathab, R. Suja Mani Malar, and T. Ahilan, Amethod of extended Jacobian and firefly algorithm for thekinematic analysis of planar robots, International Journal ofRobotics and Automation, 6(2), 2017, 141–150.
  20. [20] Z. Li, H. Ma, Y. Ding, C. Wang, and Y. Jin, Motion planning ofsix-DOF arm robot based on improved DDPG algorithm, Proc.Chinese Control Conf. (CCC), Shenyang, 2020, 3954–3959.
  21. [21] F. Cheng, J. Lee, A. Ajoudani, C. Zhou, N.G. Tsagarakis,and D.G. Caldwell, RRT-based motion planning with samplingin redundancy space for robots with anthropomorphic arms,Proc. IEEE Int. Conf. on Advanced Intelligent Mechatronics(AIM), Munich, 2017, 1612–1618.
  22. [22] P.S. Schmitt, F. Wirnshofer, M.W. Kai, G.V. Wichert, andW. Burgard, Planning reactive manipulation in dynamicenvironments, Proc. IEEE/RSJ Int. Conf. on Intelligent Robotsand Systems (IROS), Macau, 2019, 136–143.
  23. [23] J. Zhou, Adaptive fuzzy finite-time control for uncertainrobotic manipulator, International Journal of Robotics andAutomation, 32(2), 2017, 134–141.
  24. [24] S. Yeasmin and P.C. Shill, GA-based adaptive fuzzy logiccontroller for a robotic arm in the presence of moving obstacle,Proc. Int. Conf. on Electrical Information and CommunicationTechnology (EICT), Khulna, 2017, 1–6.
  25. [25] T. Enchanter, Genetic algorithms, partical swarm optimization,fuzzy logic: timcardenuto/intelligent-algorithms, https://github.com/timcardenuto/intelligent-algorithms (accessedMay 11, 2018).
  26. [26] S.D. Das, V. Bain, and P. Rakshit, Energy optimized robotarm path planning using differential evolution in dynamicenvironment, Proc. IEEE Int. Conf. on Intelligent Computingand Control Systems (ICICCS), Madurai, 2018, 1267–1272.
  27. [27] H. Tourajizadeh and O. Gholami, Closed loop nonlinear optimalcontrol of a 3PRS parallel robot, International Journal ofRobotics and Automation, 36(2), 2021, 128–132.215
  28. [28] S. Zhao, B. Siciliano, Z. Zhu, A. Guti´errez-Giles, and J. Luo,Multi-waypoint-based path planning for free-floating spacerobots, International Journal of Robotics and Automation,34(5), 2019, 461–467.
  29. [29] S. Hosseini and I. Hahn, Kinodynamic motion planning andenergy loss cost function modelling for a 2- DOF robot armmanipulator, Proc. IEEE Int. Conf. on Industrial Technology(ICIT), Buenos Aires, 2020, 375–380
  30. [30] W. Zhang, S. Wei, J. Zeng, and N. Wang, Multi-UUV pathplanning based on improved artificial potential field method,International Journal of Robotics and Automation, 36(4), 2021,231–239.
  31. [31] S. Gai, R. Sun, S. Chen, and S. Ji, 6-DOF robotic obstacleavoidance path planning based on artificial potential fieldmethod, Proc. IEEE Int. Conf. on Ubiquitous Robots (UR),Jeju, 2019, 165–168.
  32. [32] R. Zhao and D. Sidobe, On-line trajectory generation con-sidering kinematic motion constraints for robot manipulators,International Journal of Robotics and Automation, 33(6), 2018,645–653.
  33. [33] C. Lin, H. Wang, J. Yuan, and M. Fu, An online path planningmethod based on hybrid quantum ant colony optimizationfor AUV, International Journal of Robotics and Automation,33(4), 2018, 435–444.
  34. [34] J. Ichnowski and R. Alterovitz, Multilevel incremental roadmapspanners for reactive motion planning, Proc. IEEE/RSJ Int.Conf. on Intelligent Robots and Systems (IROS), Macau, 2019,1504–1509.
  35. [35] Y. Zhao, F. Yuan, C. Chen, L. Jin, J. Li, X. Zhang, and X.Lu, Inverse kinematics and trajectory planning for a hyper-redundant bionic trunk-like robot, International Journal ofRobotics and Automation, 35(3), 2020, 229–241.
  36. [36] Y. Kapani, Implemented ‘Obstacle Avoidance’ steeringbehavior to avoid collisions using ‘Circle vs OBB’ algo-rithm: Yashkapani/obstacle-avoidance, https://github.com/yashkapani/Obstacle-Avoidance (accessed Nov. 9, 2017).
  37. [37] X. You, S. Liu, and C. Zhang, An improved ant colony systemalgorithm for robot path planning and performance analysis,International Journal of Robotics and Automation, 33(5), 2018,527–533.
  38. [38] F. Xie and X. Shi, A global path planning for mannedsubmersible based on improved ant colony algorithms,International Journal of Robotics and Automation, 36(4), 2021,204–210.
  39. [39] S.M. Varedi-Koulaei and M. Mokhtari, Trajectory trackingsolution of a robotic arm based on optimized ANN, Proc.IEEE/RSI Int. Conf. on Robotics and Mechatronics (IcRoM),Tehran, 2018, 76–81.
  40. [40] F. Bourbonnais, P. Bigras, and I.A. Bonev, Minimum-timetrajectory planning and control of a pick-and-place five-barparallel robot, IEEE/ASME Transactions on Mechatronics,20(2), 2015, 740-749.
  41. [41] M. Elsisi, K. Mahmoud, M. Lehtonen, and M.M.F. Darwish, Animproved neural network algorithm to efficiently track varioustrajectories of robot manipulator arms, IEEE Access, 9, 2021,11911–11920.
  42. [42] T. Yan, W. Zhang, S. Yang, and L. Yu, Soft actor-critic reinforcement learning for robotic manipulator withhindsight experience replay, International Journal of RoboticsAutomation, 34(5), 2019, 536–543.
  43. [43] G. Dong, M. Cong, and H. Chen, Effective algorithms tofind a minimum-time yet high smooth robot joint trajectory,International Journal of Robotics and Automation, 34(3), 2019,31–40.
  44. [44] D. Kim, M. Kang, and S.-E. Yoon, Volumetric tree: Adaptivesparse graph for effective exploration of homotopy classes,Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems(IROS), Macau, 2019, 1496–1503.
  45. [45] Z. Xu, Y. Gan, and X. Dai, Obstacle avoidance of 7-DOFredundant manipulators, Proc. Chinese Control And DecisionConf. (CCDC), Nanchang, 2019, 4184–4189.
  46. [46] S. Vemprala, RRT algorithm: Saihv/rrtstar, https://github.com/saihv/rrtstar (accessed January 5, 2017).
  47. [47] K. Kamali, I.A. Bonev, and C. Desrosiers, Real-time motionplanning for robotic teleoperation using dynamic-goal deepreinforcement learning, Proc. IEEE Conf. on Computer andRobot Vision (CRV), Ottawa, ON, 2020, 182–189.
  48. [48] D.V. Cunha and F. Lizarralde, Real-time path-constrainedtrajectory tracking for robot manipulators with energy budgetoptimization, Proc. IEEE Int. Conf. on Automation Scienceand Engineering (CASE), Vancouver, BC, 2019, 1327–1332.
  49. [49] H. Chen, J. Li, W. Wan, Z. Huang, and K. Harada, Integratingcombined task and motion planning with compliant control,International Journal of Intelligent Robotics and Applications,4(3), 2021, 1–15.
  50. [50] H. Zhang, H. Jin, Y. Liu, and H. Yuan, An improved real-timetracking scheme based on gradient projection for kinematicallyredundant manipulators, Proc. IEEE Int. Conf. on Roboticsand Automation Engineering (ICRAE), Shanghai, 2018, 136–140.
  51. [51] L. Zhang, Z. Liu, and X. Qin, Application and researchof MBR-PRM algorithm based on obstacle feature analysis,International Journal of Robotics and Automation, 36(1), 2021,345–353.
  52. [52] T. Yan, W. Zhang, S. Yang, and L. Yu, Soft actor-critic reinforcement learning for robotic manipulator withhindsight experience replay, International Journal of RoboticsAutomation, 34(5), 2019, 536–543.
  53. [53] O. Adiyatov and H.A. Varol, A novel RRT-based algorithmfor motion planning in dynamic environments, Proc. IEEE Int.Conf. on Mechatronics and Automation (ICMA), Takamatsu,2017, 1416–1421.
  54. [54] H. Zhao, J. Zhao, X. Duan, X. Gong, and G. Bian, Research oncollision avoidance control of multi-arm medical robot basedon c-space, IEEE Access, 8, 2020, 93219–93229.
  55. [55] J. Liang, Z. Xu, X. Zhou, S. Li, and G. Ye, Recurrentneural networks-based collision-free motion planning for dualmanipulators under multiple constraints, IEEE Access, 8, 2020,54225–54236.
  56. [56] J. Sanjuan, M. Rahman, and I. Rulik, Forward kinematicanalysis of Dobot using closed-loop method, InternationalJournal of Robotics and Automation, 9(3), 2020, 153–159.
  57. [57] D. Zhang, Y. Xu, J. Yao, and Y. Zhao, Kinematics modellingand optimization design of a 5-DOF hybrid manipulator,International Journal of Robotics and Automation, 33(4), 2018,407–417.
  58. [58] Q. Zhe, L. Xiao-Chu, and Z. Zhuan, Delta parallel robot basedon crank-slider mechanism, International Journal of Roboticsand Automation, 6(2), 2017, 112–120.
  59. [59] H. Tang, D. Zhang, S. Guo, H. Qu, and G. Huang, Kinematicsanalysis of a novel 2RLT parallel mechanism, InternationalJournal of Robotics and Automation, 33(2), 2018, 120–132.
  60. [60] S. Baraldo and A. Valente, Smooth joint motion planning forhigh precision reconfigurable robot manipulators, Proc. IEEEInt. Conf. on Robotics and Automation (ICRA), Singapore,2017, 845–850.
  61. [61] J. Amar and K. Nagase, Design optimization of tree-typerobotic systems using exponential coordinates and geneticalgorithms, Proc. IEEE Int. Conf. on Control, Automationand Robotics (ICCAR), Singapore, 2020, 67–73.
  62. [62] A. Sintov, S. Macenski, A. Borum, and T. Bretl, Motionplanning for dual-arm manipulation of elastic rods, IEEERobotics and Automation Letters, 5(4), 2020, 6065–6072.
  63. [63] H. Nascimiento, M. Mujica, and M. Benoussaad, Collisionavoidance interaction between human and a hidden robotbased on kinect and robot data fusion, IEEE Robotics andAutomation Letters, 6(1), 2020, 88–94.
  64. [64] A. V¨olz and K. Graichen, Composition of dynamic roadmaps fordual-arm motion planning, Proc. IEEE Int. Conf. on AdvancedIntelligent Mechatronics (AIM), Munich, 2017, 1242–1248.
  65. [65] J. Wang, X. Lin, H. Zhang, G. Lu, Q. Pan, and H. Li,Path planning of manipulator using potential field combinedwith sphere tree model, International Journal of Robotics andAutomation, 35(2), 2020, 148–161.
  66. [66] W. Xu, X. Xiao, and X. Jiang, Sensorless robot collisiondetection based on optimized velocity deviation, Proc. IEEEChinese Automation Congress (CAC), Jinan, 2017, 6200–6204.
  67. [67] X. Xu, Y. Gan, C. Xu, and X. Dai, Robot collision detectionbased on dynamic model, Proc. IEEE Chinese AutomationCongress (CAC), Jinan, 2017, 6578–6582.216
  68. [68] A.A. Kabanov and D.A. Tokarev, Self-collision avoidancemethod for a dual-arm robot, Proc. IEEE Int. Conf. on Controlin Technical Systems (CTS), St. Petersburg, 2019, 273–276.
  69. [69] N. Figueroa, Dual-arm self-collision avoidance boundary:nbfigueroa/SCA-boundary-learning, https://github.com/nbfigueroa/SCA-Boundary-Learning (accessed Mar. 22, 2018).
  70. [70] Y. Cao, J. Gu, Y. Zang, X. Wu, S. Zhang, and M. Guo,Path planning-oriented obstacle avoiding workspace modellingfor robot manipulator, International Journal of Robotics andAutomation, 34(1), 2019, 1–16.
  71. [71] R. Kumar, C. Karthikeyan, and A.K. Dash, A new workspaceanalysis method for 6-DOF 3-RRRS parallel manipulators,International Journal of Robotics and Automation, 34(2), 2019,135–145.

Important Links:

Go Back