AN ADAPTIVE LOCALISATION METHOD BASED ON DBSCAN ALGORITHM IN MOBILE ROBOT, 323-333.

Chen De, Yan Qingdong, Zhou Junxiong, and Du Yixian

References

  1. [1] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza,J. Neira, I. Reid, and J.J. Leonard, Past, present, and futureof simultaneous localization and mapping: Toward the robust-perception age, IEEE Transactions on Robotics, 32(6), 2016,1309–1332
  2. [2] A. Moosavian and F. Xi, Modular design of parallel robotswith static redundancy, Mechanism and Machine Theory, 96,2016, 26–37.
  3. [3] S. Lu, C. Xu, R.Y. Zhong, and L. Wang, A RFID-enabled positioning system in automated guided vehicle forsmart factories, Journal of Manufacturing Systems, 44, 2017,179–190.
  4. [4] Y. Zhuang, K. Wang, W. Wang, and H. Hu, A hybridsensing approach to mobile robot localization in complexindoor environments, International Journal of Robotics andAutomation, 27(2), 2012, 198–205.
  5. [5] Z. Wang, Q. Cao, N. Luan, and L. Zhang, A novelautonomous localization technique of subsea in-pipe robot,International Journal of Robotics and Automation, 25(2), 2010,102–108.
  6. [6] S. Saeedi, L. Paull, M. Trentini, and H. Li, Occupancy gridmap merging for multiple robot simultaneous localization andmapping, International Journal of Robotics and Automation,30(2), 2015, 149–157.
  7. [7] W. Hao, T. Guo-Hui, L. Yan, Z. Feng-Yu, and D. Peng,Spatial semantic hybrid map building and application of mobileservice robot, Robotics and Autonomous Systems, 33(2), 2018,161–168.
  8. [8] Y. Xin, H. Liang, T. Mei, R. Huang, J. Chen, P. Zhao, C. Sun,and Y. Wu, A new dynamic obstacle collision avoidance system332for autonomous vehicles, International Journal of Robotics andAutomation, 30(3), 2015, 278–288.
  9. [9] Z. Huang, J. Zhu, L. Yang, B. Xue, J. Wu, and Z. Zhao, Accurate3-D position and orientation method for indoor mobile robotnavigation based on photoelectric scanning, IEEE Transactionson Instrumentation and Measurement, 64(9), 2015, 2518–2529
  10. [10] Y. Zhuang, K. Wang, W. Wang, and H. Hu, A hybridsensing approach to mobile robot localization in complexindoor environments, International Journal of Robotics andAutomation, 30(4), 2015, 384–396.
  11. [11] H. Abdelnasser, R. Mohamed, A. Elgohary, M.F. Alzantot, H.Wang, S. Sen, R.R. Choudhury, and M. Youssef, Semantic-SLAM: Using environment landmarks for unsupervised indoorlocalization, IEEE Transactions on Mobile Computing 15(7),2016, 1770–1782.
  12. [12] Z. Du, D. Qu, F. Xu, and D. Xu, A hybrid sensing approachto mobile robot localization in complex indoor environments,International Journal of Robotics and Automation, 32(2), 2017,414–424.
  13. [13] L. Wang and C.M. Luo, A hybrid genetic tabu search algorithmfor mobile robot to solve AS/RS path planning, InternationalJournal of Robotics and Automation, 33(2), 2018, 161–168.
  14. [14] C.L. Zhong, S.R. Liu, and B.T. Zhang, Regionalized qualitativespatial representation model and its application to mobile robotnavigation, International Journal of Robotics and Automation,35(5), 2020, 355–364.
  15. [15] J. Feng, D. Pei, Y. Zou, B. Zhang, and P. Ding, An improvedAMCL algorithm based on robot laser localization, Laser &Optoelectronics Progress, 58(20), 2021, 479–487.
  16. [16] J. Lin and N. Wenkang, Improved AMCL relocation algorithmbased on semantic map with corner information, Journal ofMechanical Engineering, 57(1), 2021, 1–12.
  17. [17] W. Ning, W. Jian, and L. Lihua, An improved adaptive MonteCarlo localization method for robot, Journal of Navigation andPositioning, 7(3), 2019, 31–37
  18. [18] M.Q. Huang, AGV precise localization and motion controlmethod. (Wuhan: Huazhong University of Science & Technol-ogy, 2019).
  19. [19] Industrial mobile robot (IMR)–Test specifications, TechnicalReport T/SSITS-IMR 401-2020, Shenzhen Robots Association,Shenzhen, 2020.

Important Links:

Go Back