Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
AN ADAPTIVE FORMULATION OF THE SMOOTH VARIABLE STRUCTURE FILTER BASED ON STATIC MULTIPLE MODELS, 1-10.
Andrew S. Lee, S. Andrew Gadsden, Stephen A. Wilkerson and Mohammad AlShabi
References
[1] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalmanfilter: Particle filters for tracking applications. (Boston, MA:Artech House, 2004).
[2] M. Avzayesh, M. Abdel-Hafez, M. AlShabi, and S.A. Gadsden,The smooth variable structure filter: A comprehensive review,Digital Signal Processing, 110, 2021, 102912.
[3] S.A. Gadsden, Smooth variable structure filtering: Theory andapplications. (Hamilton, ON: McMaster University, 2011).
[4] H.H. Afshari, S.A. Gadsden, and S.R. Habibi, Gaussian filtersfor parameter and state estimation: A review of theory andrecent trends, Signal Processing, 135, 2017, 218–238.
[5] V.I. Utkin, Variable structure systems with sliding modes, IEEETransactions on Automatic Control, 22(2), 1977, 212–222.
[6] V.I. Utkin, Sliding mode and their application in variablestructure systems. (Moscow: Mir Publ., 1978).
[7] A.F. Fillipov, Differential equation with discontinuous righthand side, 62. Providence, RI: American Mathematical SocietyTransactions, 1969.
[8] V.I. Utkin, Sliding modes in control optimization. (New York,NY: Springer-Verlag, 1992).
[9] J.J.E. Slotine, J. Hedrick, and E. Misawa, On sliding observersfor nonlinear systems, ASME Journal of Dynamic Systems,Measurement and Control, 109(3), 1987, 245–252.
[10] J.J.E. Slotine and W. Li, Applied nonlinear control. (EnglewoodCliffs, NJ: Prentice-Hall, 1991).8
[11] S.A. Gadsden and A.S. Lee, Advances of the smooth variablestructure filter: Square-root and two-pass formulations, Journalof Applied Remote Sensing, 11(1), 2017, 1–19.
[12] M. Al-Shabi, The general toeplitz/observability SVSF. (Hamil-ton, ON: McMaster University, 2011).
[13] C. Milosavlejic, General conditions for the existence of aquasi-sliding mode on the switching hyperplane in discretevariable structure systems, Automatic Remote Control, 46,1985, 307–315.
[14] K. Furuta, Sliding mode control of a discrete system, SystemsControl Letters, 14, 1990, 145–152.
[15] S.Z. Sarpturk, Y. Istefanopoulos, and O. Kaynak, On thestability of discrete-time sliding mode control systems, IEEETransactions on Automatic Control, AC-32(10), 1987, 930–932.
[16] S.K. Spurgeon, Sliding mode observers: A survey, InternationalJournal of Systems Science, 39(8), 2008, 751–764.
[17] S.H. Qaiser, A.I. Bhatti, M. Iqbal, R. Samar, and J. Qadir,Estimation of precursor concentration in a research reactor byusing second order sliding mode observer, Nuclear Engineeringand Design, 239, 2009, 2134–2140.
[18] S.H. Qaiser, A.I. Bhatti, R. Samar, M. Iqbal, and J. Qadir,Higher order sliding mode observer based estimation ofprecursor concentration in a research reactor, Proc. 4th IEEEConf. on Emerging Technologies, Rawalpindi, 2008, 338–343.
[19] C. Edwards and S. Spurgeon, On the development ofdiscontinuous observers, International Journal of Control, 59,1994, 1211–1229.
[20] J.-J.E. Slotine, J.K. Hedrick, and E.A. Misawa, On slidingobservers for nonlinear systems, Proc. American Control Conf.,Seattle, WA, 1986, 1794–1800.
[21] B. Walcott and S. Zak, State observation of nonlinear uncertaindynamical systems, IEEE Transactions on Automatic Control,AC-32(2), 1987, 166–170.
[22] B. Walcott, M. Corless, and S. Zak, Comparative study ofstate observation techniques, International Journal of Control,45(6), 1987, 2109–2132.
[23] C. Tan and C. Edwards, Sliding mode observers for robustdetection and reconstruction of actuator and sensor faults,International Journal of Robust and Nonlinear Control, 13(1),2003, 443–463.
[24] S.R. Habibi, The smooth variable structure filter, Proceedingsof the IEEE, 95(5), 2007, 1026–1059.
[25] S.A. Gadsden, Smooth variable structure filtering: Theory andapplications, PhD Thesis, McMaster University, Hamilton, ON,Canada, 2011.
[26] S.A. Gadsden, S.R. Habibi, and T. Kirubarajan, Kalman andsmooth variable structure filters for robust estimation, IEEETransactions on Aerospace and Electronic Systems, 50(2),2014, 1038–1050.
[27] S.A. Gadsden, M. El Sayed, and S.R. Habibi, Derivation of anoptimal boundary layer width for the smooth variable structurefilter, Proc. ASME/IEEE American Control Conf. (ACC), SanFrancisco, CA, 2011, 4922–4927.
[28] S.A. Gadsden and S.R. Habibi, A new robust filtering strategyfor linear systems, ASME Journal of Dynamic Systems,Measurement, and Control, 135(1), 2013, 9.
[29] S.A. Gadsden, M. Al-Shabi, and S.R. Habibi, Estimationstrategies for the condition monitoring of a battery system ina hybrid electric vehicle, ISRN Signal Processing, 2011, 2011,120351.
[30] J. Goodman, J. Kim, A.S. Lee, and S.A. Gadsden, A variablestructure-based estimation strategy applied to an RRR robotsystem, Journal of Robotics, Networking and Artificial Life,4(2), 2017, 142–145.
[31] J. Kim, S. Bonadies, C.D. Eggleton, and S.A. Gadsden,Cooperative robot exploration strategy using an efficientbacktracking method for multiple robots, ASME Journal ofMechanisms and Robotics, 10(6), 2018, 7.
[32] M. Al-Shabi, S.A. Gadsden, and S.R. Habibi, Kalman filteringstrategies utilizing the chattering effects of the smooth variablestructure filter, Signal Processing, 93(2), 2013, 420–431.
[33] H.H. Afshari, The 2nd-order smooth variable structure filter(2nd-SVSF) for state estimation: Theory and applications,PhD Thesis, McMaster University, Hamilton, ON, Canada,2014.
[34] S.A. Gadsden and A.S. Lee, Advances of the smooth variablestructure filter: Square-root and two-pass formulations, Journalof Applied Remote Sensing, 11(1), 2017, 15018.
[35] M. Al-Shabi and A. Elnady, Recursive smooth variable structurefilter for estimation processes in direct power control schemeunder balanced and unbalanced power grid, IEEE SystemsJournal, 14(1), 2019, 971–982.
[36] S.A. Gadsden and M. Al-Shabi, The sliding innovation filter,IEEE Access, 8, 2020, 96129–96138.
[37] A. Lee, S. Gadsden, and M. AlShabi, An adaptive formulationof the sliding innovation filter, IEEE Signal Processing Letters,28, 2021, 1295–1299.
[38] M.A. AlShabi, S.A. Gadsden, M. El Haj Assad, and B.Khuwaileh, A multiple model-based sliding innovation filter,Proc. Signal Processing, Sensor/Information Fusion, andTarget Recognition XXX, Baltimore, MD, 2021, 1175608.
[39] M. AlShabi, S. Andrew Gadsden, M. El Haj Assad, B.Khuwaileh, and S. Wilkerson, Application of the slidinginnovation filter to unmanned aerial systems, Proc. UnmannedSystems Technology XXIII, Baltimore, MD, 2021, 117580T.
[40] S.A. Gadsden, S.R. Habibi, and T. Kirubarajan, Kalman andsmooth variable structure filters for robust estimation, IEEETransactions on Aerospace and Electronic Systems, 50(2),2014, 1038–1050.
[41] S.A. Gadsden, M. Al-Shabi, I. Arasaratnam, and S.R. Habibi,Combined cubature Kalman and smooth variable structurefiltering: A robust estimation strategy, Signal Processing, 96,Mar. 2014, 290–299.
[42] T.Q.S. Truong, Exploration of adaptive filters for targettracking in the presence of model uncertainty, Proc. 6th Int.Conf. on Intelligent Sensors, Sensor Networks and InformationProcessing, Brisbane, QLD, 2010, 1–6.
[43] S.A. Gadsden, Y. Song, and S.R. Habibi, Novel model-basedestimators for the purposes of fault detection and diagnosis,IEEE/ASME Transactions on Mechatronics, 18(4), 2013,1237–1249.
[44] M. Esfandiari and N. Sepehri, Controller design and stabilityanaylysis of ouput pressure regulation in electrohydrostaticactuators, AMSE, Journal of Dynamic Systems, Measurement,and Control, 141(4), 2019, 41008.
[45] A. Maddahi, W. Kinsner, and N. Sepehri, Internal leakagedetection in electrohydrostatic actuators using multiscaleanalysis of experimental data, IEEE Transactions onInstrumentation and Measurement, 65(12), 2016, 2734–2747.
[46] H.H. Afshari, S.A. Gadsden, and S.R. Habibi, Robust faultdiagnosis of an electro-hydrostatic actuator using the noveloptimal second-order SVSF and IMM Strategy, InternationalJournal of Fluid Power, 15(3), 2014, 181–196.
[47] S.A. Gadsden and T. Kirubarajan, Development of a variablestructure-based fault detection and diagnosis strategy appliedto an electromechanical system, Proc. SPIE Signal Processing,Sensor/Information Fusion, and Target Recognition, XXVI,Anaheim, CA, 2017, 102001E.
Important Links:
Abstract
DOI:
10.2316/J.2023.206-0879
From Journal
(206) International Journal of Robotics and Automation - 2023
Go Back