Phuong Thao Thai and Ngoc Hai Nguyen


  1. [1] T.K. Kuribayashi, Z. You, D. Tomus, M. Umemoto, T. Ito, andM. Sasaki, Self-deployable origami stent grafts as a biomedicalapplication of Ni-rich TiNi shape memory alloy foil, PolymericMaterials Science and Engineering, 419(1–2), 2006, 131–137.
  2. [2] C.D. Onal, R.J. Wood, and D. Rus, An origami-inspiredapproach to worm robots, IEEE/ASME Transactions onMechatronics, 18(2), 2013, 430–438.
  3. [3] B. An and D. Rus, Designing and programming self-foldingsheets, Robotics and Autonomous Systems, 62(7), 2013,976–1001.
  4. [4] T. Tachi, Rigid-foldable thick origami, Origami 5, 2011,253–264.
  5. [5] J. Kim, D.-Y. Lee, S.-R. Kim, and K.-J. Cho, A self-deployableorigami structure with locking mechanism induced by bucklingeffect, Proc. IEEE Int. Conf. on Robotics and Automation,Seattle, WA, 2015, 3166–3171.
  6. [6] S.M. Felton, M.T. Tolley, C.D. Onal, D. Rus, and R.J. Wood,Robot self-assembly by folding: A printed inchworm robot,Proc. IEEE Int. Conf. on Robotics and Automation (ICRA),Karlsruhe, 2013, 277–282.
  7. [7] M.T. Tolley, S.M. Felton, S. Miyashita, D. Aukes, D. Rus, andR.J. Wood, Self-folding origami: Shape memory compositesactivated by uniform heating, Smart Materials and Structures,23(9), 2014, 94006.
  8. [8] B. Edmondson, R. Lang, S. Magleby, and L. Howell, An offsetpanel technique for thick rigidily foldable origami, Proc. 38thMechanisms and Robotics Conf., Buffalo, NY, 2014, 8.
  9. [9] Z. Zhakypov, C.H. Belke, and J. Paik, Tribot: A deployable, self-righting and multi-locomotive origami robot, Proc. IEEE/RSJInt. Conf. on Intelligent Robots and Systems (IROS),Vancouver, BC, 2017, 5580–5586.
  10. [10] C.H. Belke and J. Paik, Automatic couplings with mechanicaloverload protection for modular robots, IEEE/ASME Trans-actions on Mechatronics, 24(3), 2019, 1420–1426.
  11. [11] J.S. Ku and E.D. Demaine, Folding flat crease patterns withthick materials, Journal of Mechanism Robotics, 8(3), 2016,31003.
  12. [12] Y. Chen, H. Feng, J. Ma, R. Peng, and Z. You, Symmetricwaterbomb origami, Journal of Biomedical Materials ResearchPart A, 472(2190), 2016, 20150846.
  13. [13] P.T. Thai and N.H. Nguyen, Design and control of a double-Sarrus mobile robot, in Mechanisms and machine science, vol.113. (Cham: Springer, 2021).
  14. [14] P.T. Thai, M. Savchenko, H.T.T. Nguyen, and I. Hagiwara,Simulation-based approach for paper folding with the aimto design the origami-performing robotic system, MechanicalEngineering Journal, 3(6), 2016, 15-00668.
  15. [15] P.T. Thai, M. Savchenko, and I. Hagiwara, Finite elementsimulation of robotic origami folding, Simulation ModellingPractice and Theory, 84, 2018, 251–267.
  16. [16] T. Tachi, Simulation of rigid origami. Origami, 4, 2009,175–187.
  17. [17] H. Feng, R. Peng, J. Ma, and Y. Chen, Rigid foldabilityof generalized triangle twist origami pattern and itsderived 6R linkages, Journal of Mechanisms Robotics, 10(5),2018, 13.
  18. [18] Y. Chen, R. Peng, and Z. You, Origami of thick panels, Science,349(6246), 2015, 396–400.
  19. [19] T. Anzai, M. Zhao, M. Murooka, F. Shi, K. Okada, and M.Inaba, Design, modeling and control of fully actuated 2Dtransformable aerial robot with 1 DoF thrust vectorable linkmodule, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots andSystems (IROS), Macau, 2019, 2820–2826.
  20. [20] N. Iida and M. Matsumoto, A transformable sheet type robotthat can be thrown from the air, Biomimetics, 7(3), 2022, 114.
  21. [21] T. Tachi and G. Epps, Designing one-DOF mechanismsfor architecture by rationalizing curved folding, Proc. Int.Symposium on Algorithmic Design for Architecture and UrbanDesign, Tokyo, 2011, 1–14.
  22. [22] Sarrus linkage, https://en.wikipedia.org/wiki/Sarrus linkage(accessed Nov. 29, 2022).
  23. [23] Z. You and Y. Chen, Two-fold symmetrical 6R foldableframe and its bifurcations, International Journal of Solids andStructures, 46(25–26), 2009, 4504–4514.
  24. [24] H. Feng, Kinematics of spatial linkages and its applications torigid origami, Ph.D. Thesis, Universit´e Clermont Auvergne,Clermont-Ferrand, France, 2018.
  25. [25] ˙I. Merty¨uz, A.K. Tanyıldızı, B.Ta¸sar, A.B. Tatar, and O. Yakut,FUHAR: A transformable wheel-legged hybrid mobile robot,Robotics and Autonomous Systems, 133, 2020, 103627.
  26. [26] C. Nara, I. Hagiwara, Y. Yang, and X. Chen, Flat-foldableboxes of thick panels: Hinges and supporters, Proc. ASMEInt. Design Engineering Technical Conf. and Computers andInformation in Engineering Conf., Cleveland, OH, 2017, 7.
  27. [27] W. Abbasi, F.U. Rehman, I. Shah, and A. Rauf, Stabilizingcontrol algorithm for nonholonomic wheeled mobile robotsusing adaptive integral sliding mode, International Journal ofRobotics and Automation, 34, 2019, 112–119.10

Important Links:

Go Back