Xiuzhen Tang and Laliphat Manamanchaiyaporn


  1. [1] B.J. Nelson, I.K. Kaliakatsos, and J.J. Abbott, Microrobotsfor minimally invasive medicine, Annual Review of BiomedicalEngineering, 12, 2010, 55–85.
  2. [2] L. Manamanchaiyaporn, T. Xu, and X. Wu, An optimaldesign of an electromagnetic actuation system towards alarge homogeneous magnetic field and accessible workspace formagnetic manipulation, Energies, 13, 2020, 911.
  3. [3] L. Manamanchaiyaporn, T. Xu, X. Wu, and H. Qian, Rolesof magnetic strength in magneto-elastomer towards swimmingmechanism and performance of miniature robots, InternationalJournal of Robotics and Automation, 35, 2020, 1–8.
  4. [4] L. Manamanchaiyaporn, T. Xu, and X. Wu, Magnetic soft robotwith the triangular head–tail morphology inspired by lateralundulation, IEEE/ASME Transactions on Mechatronics,25(6), 2020, 2688–2699.
  5. [5] S. Palagi and P. Fischer, Bioinspired microrobots, NatureReviews Materials, 3,2018, 113–124.
  6. [6] L. Zhang, J.J. Abbott, L.X. Dong, B.E. Kratochvil, D.J. Bell,and B.J. Nelson, Artificial bacterial flagella: fabrication andmagnetic control, Applied Physics Letters, 94, 2009, 64107.
  7. [7] H.-W. Huang, M.S. Sakar, A.J. Petruska, S. Pane, andB.J. Nelson, Soft micromachines with programmable motil-ity and morphology, Nature Communications, 7, 2016,12263.
  8. [8] E. Diller, J. Zhuang, G.Z. Lum, M.R. Edwards, and M. Sitti,Continuously distributed magnetization profile for millimeter-scale elastomeric undulatory swimming, Applied PhysicsLetters, 104, 2014, 174101
  9. [9] G.Z. Lum, Y. Zhou, X. Dong, H. Marvi, O. Erin, W. Hua,and M. Sitti, Shape-programmable magnetic soft matter, TheProceedings of the National Academy of Sciences, 113(41),2016, 6007–6015.
  10. [10] W. Hu, G.Z. Lum, M. Mastrangeli, and M. Sitti, Small-scalesoft-bodied robot with multimodal locomotion, Nature, 554,2018, 81–85.
  11. [11] M. Cianchetti, C. Laschi, A. Menciassi, and P. Dario,Biomedical applications of soft robotics, Nature ReviewsMaterials, 3, 2018, 143–153.
  12. [12] M. Sitti, Miniature soft robots—road to the clinic, NatureReviews Materials, 3, 2018, 74–75.
  13. [13] E.M. Purcell, Life at low Reynolds number, American Journalof Physics, 45, 1977, 3–11.
  14. [14] T. Qiu, T.C. Lee, A.G. Mark, K.I. Morozov, R. M¨unster,O. Mierka, S. Turek, A.M. Leshansky, and P. Fischer,Swimming by reciprocal motion at low Reynolds Number,Nature Communications, 25, 2014, 514–519.
  15. [15] I.S.M. Khalil, A.F. Tabak, Y. Hamed, M.E. Mitwally, M.Tawakol, A. Klingner, and M. Sitti, Swimming back and forthusing planar flagellar propulsion at low Reynolds numbers,Advanced Science, 5(2), 2017, 1700461.
  16. [16] B.J. Williams, S.V. Anand, J. Rajagopalan, and M.T.A. Saif,A self-propelled biohybrid swimmer at low Reynolds number,Nature Communications, 5, 2014, 3081.
  17. [17] N.A. Spaldin, Magnetic materials fundamentals and applica-tions, 2nd ed. (Cambridge, MA: Cambridge University Press,2010).
  18. [18] L. Manamanchaiyaporn, T. Xu, and X. Wu, The HyBrid systemwith a large workspace towards magnetic micromanipulationwithin the human head, Proc. IEEE/RSJ Int. Conf. onIntelligent and Robotic Systems, Vancouver, BC, 2017,402–407.
  19. [19] C. Rossi, J. Colorado, W. Coral, and A. Barrientos,Bending continuous structures with SMAs: a novel roboticfish design, Bioinspiration and Biomimetics, 6(4), 2011,45005.
  20. [20] L. Manamanchaiyaporn, X. Tang, X. Yan, and Y. Zheng,Molecular transport of a magnetic nanoparticle swarm towardsthrombolytic therapy, IEEE Robotics and Automation Letters,6(3), 2021, 5605–5612.
  21. [21] E. Gultepe, J.S. Randhawa, S. Kadam, S. Yamanaka, F.M.Selaru, E.J. Shin, A.N. Kalloo, and D.H. Gracias, Biopsywith thermally-responsive untethered microtools, AdvancedMaterials, 25, 2013, 514–519.
  22. [22] W. Zhu, J. Li, Y.J. Leong, I. Rozen, X. Qu, R. Dong, Z. Wu,et al., 3D-printed artificial microfish, Advanced Materials, 27,2015, 4411–4417.
  23. [23] C.W. de Silva, S. Xiao, M. Li, and C.N. de Silva, Telemedicine–remote sensory interaction with patients for medical evaluationand diagnosis, Mechatronic Systems and Control, 41(4),2013, 1–12.
  24. [24] V.A. Pham, T.T. Nguyen, and T.Q. Vo, Dynamicallypropulsive model of a fish robot with flexible non-uniformpectoral fins, Mechatronic Systems and Control, 49, 2021,83–92.
  25. [25] Y.M. Alsayed, A.A. Abouelsoud, and A.M.R. Fath El Bab,Intelligent position control of shape memory alloy helicalspring actuator, Mechatronic Systems and Control, 48, 2020,116–127.
  26. [26] Y. Xia and Z. Li, Research on the distribution of magnetic fieldin reinforced concrete beams after damage based on the force-magnetic coupling model, Mechatronic Systems and Control,50, 2022, 130–137.40

Important Links:

Go Back