HiL IMPLEMENTATION OF HARMONY SEARCH-BASED REDESIGNED PI-LIKE CONTROL FOR DC SERVO, 1-10.

Jim George and Geetha Mani

References

  1. [1] A.R. Pathiran and J. Prakash, Design and implementation of amodel-based PI-like control scheme in a reset configuration forstable single-loop systems, The Canadian Journal of ChemicalEngineering, 92(9), 2014, 1651–1660.
  2. [2] Z.S. Gelmanova, G.G. Zhabalova, G. Sivyakova, N. Lelikova,O.N. Onishchenko, A.A. Smailova, and S.N. Kamarova,Electric cars. Advantages and disadvantages, Journal ofPhysics: Conf. Series, 1015, 2018, 052029, doi: 10.1088/1742-6596/1015/5/0520297
  3. [3] M.G.H. Omran and M. Mahdavi, Global-best harmony search,Applied Mathematics and Computation, 198(2), 643–656,2008.
  4. [4] M. Geetha, Implementation of ACO tuned modified PI-likeposition and speed control of DC motor: An application toelectric vehicle, soft computing for problem solving, in Advancesin Intelligent Systems and Computing, 1048, 2020, 629–645.
  5. [5] J.H. Kim, Harmony search algorithm: A unique music-inspiredalgorithm, Procedia Engineering, 154, 2016, 1401–1405.
  6. [6] T. Radpukedee, Sliding mode contol with PID tuning technique:An application to a dc servo motor position control, EnergyResearch Journal, 1(2), 2010, 55–61.
  7. [7] A.M. Yousef and A. Kaseem, Servo DC motor position controlbased on sliding mode approach, STCEX, 4(557), 2009,1320–1327.9
  8. [8] A.M. Yousef, Experimental setup verification of DC servomotor position control based on integral sliding mode control,WSES Transactions on System and Control, 3(7), 2012,87–96.
  9. [9] S. Mondal and C. Mhanta, Adaptive integral higher ordersliding mode controller for uncertain systems, Journal ofControl Theory Application, 1(61), 2013, 61–68.
  10. [10] B.F. Midhat, A.J. Humaidi, and F.A. Raheem, Design ofintegral sliding mode controller for servo DC motor, NJES,20(3), 2017, 685–691.
  11. [11] W.A. Poe and S. Mokhatab, Process control, in Modeling,control, and optimization of natural gas processing plants.(Amsterdam: Gulf Professional Publishing, 2017), 97–172.doi:10.1016/b978-0-12-802961-9.00003-6
  12. [12] A. Ghosh, T. Rakesh Krishnan, P. Tejaswy, A. Mandal,J.K. Pradhan, and S. Ranasingh, Design and imple-mentation of a 2-DOF PID compensation for magneticlevitation systems, ISA Transactions, 53(4), 2014, 1216–1222.doi:10.1016/j.isatra.2014.05.015
  13. [13] N.G. Adar and R. Kozan, Comparison between real time PIDand 2-DOF PID controller for 6-DOF robot arm, Acta PhysicaPolonica A, 130, 2016, 69–271.
  14. [14] Quanser Qube servo 2 user manual, https://www.made-for-science.com/de/quanser/?df=made-for-science-quanser-qube-servo-2-usermanual.pdf (2016).
  15. [15] P.L. Shyamsundar, P.L. Rishi, and P.L. Jamuna, LQRbased fuzzy logic rudder control system using DC servomotor, Proc. 5th Int. Conf. on Advanced Computing Com-munication Systems (ICACCS), Coimbatore, 2019, 124–127,doi:10.1109/ICACCS.2019.8728474.
  16. [16] R. Parvathy, A.E. Daniel, and C.M. Noufal, Analysisof extended-state-observer and active-disturbance-rejectioncontrol in the speed control of DC motor system, MechatronicSystems and Control, 47, 2019, 63–70. doi:10.2316/J.2019.201-2952.
  17. [17] K. Indriawati and N. Sebe, Fault tolerant method on positioncascade control of DC servo system, Mechatronic Systems andControl 48, 2020, 144–151. doi:10.2316/J.2020.201-0094.
  18. [18] R. Rajesh and S.N. Deepa, Design of direct MRAC augmentedwith 2 DoF PIDD controller: An application to speed controlof a servo plant, Journal of King Saud University-EngineeringSciences, 32(5), 2020, 310–320.
  19. [19] U.M. Nath, C. Dey, and R.K. Mudi, A switching IMC-PIDcontroller design for lag dominating processes with real-timevalidaton, Mechatronic Systems and Control, 48(3), 2020,171–182.
  20. [20] H.R. Moshtaghi, A.T.Eshlaghy, and M. Reza Motadel, Acomprehensive review on meta-heuristic algorithms and theirclassification with novel approach, Journal of Applied Researchon Industrial Engineering 8(1), 2021, 63–89.

Important Links:

Go Back