Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
METHOD BASED ON WORK–TIME NUMBERS FOR ATTRACTIVE SEGMENTS, 148-154.
Wangbao Xu and Mingyan Sun
References
[1] Y.H. Yang, W.B. Xu, G.X. Rong, X. Liu, and X. Chen, A self-organizing approach based on task-points for forming complexswarm-robot transport formations, International Journal ofRobotics and Automation, 32(5), 2017, 482–491.
[2] W.B. Xu, X.P. Liu, X.B. Chen, and Q.B. Sun, An artificialmoment method for conflict resolutions with robots being closeto their targets, Information Sciences, 542, 2021, 286–301.
[3] M.S. Abed, O.F. Lutfy, and Q.F. Al-Doori, A review onpath planning algorithms for mobile robots, Engineering andTechnology Journal, Part A, 39(5), 2021, 804–820.
[4] Y. Gao, J. Liu, M.Q. Hu, H. Xu, K.P. Li, and H. Hu,A new path evaluation method for path planning withlocalizability, IEEE Access, 7, 2019, 162583–162597. DOI:10.1109/access.2019.2950725.
[5] D. Devaurs, T. Sim´eon, and J. Cort´es, Optimal path planningin complex cost spaces with sampling-based algorithms, IEEETransactions on Automation Science and Engineering, 13(2),2016, 415–424.
[6] T.T. Mac, C. Copot, D.T. Tran, and R. De Keyser, Heuristicapproaches in robot path planning: A survey, Robotics andAutonomous Systems, 86, 2016, 13–28.
[7] W.-B. Xu, X.-B. Chen, J. Zhao, and X.-P. Liu, Function-segment artificial moment method for sensor-based pathplanning of single robot in complex environments, InformationSciences, 280, 2014, 64–81.
[8] A.K. Guruji, H. Agarwal, and D.K. Parsediya, Time-efficientA algorithm for robot path planning, Procedia Technology,23(1), 2016, 144–149.
[9] M.M. Zafar, M.L. Anjum, and W. Hussain, LTA: Local tangentbased A for optimal path planning, Autonomous Robots, 45,2021, 209–227.
[10] M. Dakulovi´c and I. Petrovi´c, Two-way D algorithm for pathplanning and replanning, Robotics and Autonomous Systems,59(5), 2011, 329–342.
[11] C.-B. Moon and W. Chung, Kinodynamic planner dual-treeRRT (DT-RRT) for two-wheeled mobile robots using therapidly exploring random tree, IEEE Transactions on IndustrialElectronics, 62(2), 2015, 1080–1090.
[12] K. Wei and B.Y. Ren, A method on dynamic path planning forrobotic manipulator autonomous obstacle avoidance based onan improved RRT algorithm, Sensors, 18(2), 2018, 571. DOI:10.3390/s18020571.
[13] F. Kiani, A. Seyyedabbasi, R. Aliyev, M.U. Gulle, H. Basyildiz,and M.A. Shah, Adapted-RRT: Novel hybrid method tosolve three-dimensional path planning problem using samplingand metaheuristic-based algorithms, Neural Computing andApplications, 33, 2021, 15569–15599.
[14] X. Chen, Y.Y. Kong, X. Fang, and Q. Wu, A fast two-stageACO algorithm for robotic path planning, Neural Computingand Applications, 22, 2013, 313–319.
[15] M.K. Singh and D.R. Parhi, Path optimisation of a mobilerobot using an artificial neural network controller, InternationalJournal of Systems Science, 42(1), 2011, 107–120.
[16] V. Jamshidi, V. Nekoukar, and M.H. Refan, Real timeUAV path planning by parallel grey wolf optimization withalign coefficient on CAN bus, Cluster Computing, 24, 2021,2495–2509.
[17] O. Montiel, R. Sep´ulveda, and U. Orozco-Rosas, Optimalpath planning generation for mobile robots using parallelevolutionary artificial potential field, Journal of Intelligent &Robotic Systems, 79(2), 2015, 237–257.
[18] D. Fox, W. Burgard, and S. Thrun, The dynamic windowapproach to collision avoidance, IEEE Robotics & AutomationMagazine, 4(1), 1997, 23–33.
[19] A. Babinec, F. Duchoˇn, M. Dekan, Z. Mikulov´a, and L.Juriˇsica, Vector field histogram with look-ahead tree extensiondependent on time variable environment, Transactions of theInstitute of Measure and Control, 40(4), 2016, 1250–1264.
[20] L.C. Wang, L.S. Yong, and M.H. Ang Jr., Hybrid of globalpath planning and local navigation implemented on a mobilerobot in indoor environment, Proc. IEEE Int. Symposiumon Intelligent Control, Vancouver, BC, 2002, 821–826. DOI:10.1109/ISIC.2002.1157868.
[21] X.B. Zhang, J.R. Wang, Y.C. Fang, and J. Yuan, Multilevelhumanlike motion planning for mobile robots in complex indoorenvironments, IEEE Transactions on Automation Science andEngineering, 16(3), 2019, 1244–1258.
[22] K.N. McGuire, G.C.H.E. de Croon, and K. Tuyls, Acomparative study of bug algorithms for robot navigation,Robotics and Autonomous Systems, 121, 2019, 103261.https://doi.org/10.1016/j.robot.2019.103261.
[23] W.-B. Xu, X.-P. Liu, X.B. Chen, and J. Zhao, Improvedartificial moment method for decentralized local path planningof multirobots, IEEE Transactions on Control SystemsTechnology, 23(6), 2015, 2383–2390.
Important Links:
Abstract
DOI:
10.2316/J.2023.206-0595
From Journal
(206) International Journal of Robotics and Automation - 2023
Go Back