KINEMATIC ANALYSIS AND DESIGN OF A HAPTIC DEVICE FOR NEUROSURGERY SIMULATION, 60-66

Xinwei Yan∗ and Peter X. Liu

References

  1. [1] G. Higginbotham, Virtual connections: improving global neu-rosurgery through immersive technologies, Frontiers in Surgery,8, 2021, doi: 10.3389/fsurg.2021.629963.
  2. [2] K.B. Park, W.D. Johnson, and R.J. Dempsey, Global neu-rosurgery: The unmet need, World Neurosurgery, 88, 2016,32–35.
  3. [3] T.A. Mattei, A.H. Rodriguez, D. Sambhara, and E. Mendel,Current state-of-the-art and future perspectives of robotictechnology in neurosurgery, Neurosurgical Review, 37, 2014,357–366.
  4. [4] J. Corley, J. Lepard, E. Barthlemy, J.L. Ashby, and K.B.Park, Essential neurosurgical workforce needed to address neu-rotrauma in low- and middle-income countries, World Neuro-surgery, 123, 2019, 295–299.
  5. [5] W. Shi, P.X. Liu, and M. Zheng, Cutting procedures with im-proved visual effects and haptic interaction for surgical simula-tion systems, Computer Methods and Programs in Biomedicine,184, 2020, doi: 10.1016/j.cmpb.2019.105270.666
  6. [6] Q.Q. Cheng, P.X. Liu, and P.H. Lai, A novel haptic interactiveapproach to simulation of surgery cutting based on meshand meshless, Journal of Healthcare Engineering, 2018, doi:10.1155/2018/9204949.
  7. [7] J. Zhou, X.P. Liu, and C.Q. Li, A meshless deformationsimulation method for virtual surgery, International Journalof Robotic and Automation, 33(2), 2018, 118–126.
  8. [8] A. Bernardo, Virtual reality and simulation in neurosurgicaltraining, World Neurosurgery, 106, 2017, 1015–1029.
  9. [9] S. Xu, X.P. Liu, H. Zhang, and L. Hu, A nonlinear viscoelastictensor-mass visual model for surgery simulation, IEEE Trans-actions on Instrumentation and Measurement, 60(1), 2011,14–20.
  10. [10] Y. Kim, H. Kim, and Y.O. Kim, Virtual reality and augmentedreality in plastic surgery: A review, Archives of Plastic Surgery-Aps, 44(3), 2017, 179–187.
  11. [11] Q. Chen, P.X. Liu, P. Lai, and S. Xu, Modelling of soft tissuecutting in virtual surgery simulation: A literature review,International Journal of Robotics and Automation, 32(3),2017, 243–255.
  12. [12] B. Chebbi, D. Lazaroff, and P.X. Liu, A collaborative virtualhaptic environment for surgical training and tele-mentoring,International Journal of Robotics and Automation, 22(1),2007, 69–78.
  13. [13] B. Chebbi, D. Lazaroff, F. Bogsany, P.X. Liu, L. Ni, andM. Rossi, Design and implementation of a collaborative vir-tual haptic surgical training system, in IEEE InternationalConference on Mechatronics and Automation, 2005, 315–320.
  14. [14] C. Basdogan, C. Ho, M.A. Srinivasan, and M. Slater, An ex-perimental study on the role of touch in shared virtual environ-ments, ACM Transactions on Computer-Human Interaction,7(4), 2000, 443–460.
  15. [15] J.K. Gibbs, M. Gillies, and X.I. Pan, A comparison of theeffects of haptic and visual feedback on presence in virtualreality, International Journal of Human-Computer Studies,157, 2021, doi: 10.1016/j.ijhcs.2021.102717
  16. [16] M.K. Konings, E. B. Van de Kraats, and T. Alderliesten,Analytical guide wire motion algorithm for simulation of en-dovascular interventions, Medical and Biological Engineeringand Computing, 41(6), 2003, 689–700.
  17. [17] Y. Zou, P.X. Liu, Q. Cheng, P. Lai, and C. Li, A newdeformation model of biological tissue for surgery simulation,IEEE Transactions on Cybernetics, 47(11), 2017, 3494–3503.
  18. [18] W. Shi, P.X. Liu, and M. Zheng, Bleeding simulation withimproved visual effects for surgical simulation systems, IEEETransactions on Systems, Man, and Cybernetics: Systems,51(2), 686–695, 2021.
  19. [19] W. Hou, P.X. Liu, and M. Zheng, Modeling of connective tissuedamage for blunt dissection of brain tumor in neurosurgerysimulation, Computers in Biology and Medicine, 120, 103696,2020.
  20. [20] W. Hou, P.X. Liu, M. Zheng, and S. Liu, A new deformationmodel of brain tissues for neurosurgical simulation, IEEETransactions on Instrumentation and Measurement, 69(4),2020, 1251–1258.
  21. [21] Y. Zou, P.X. Liu, D. Wu, X. Yang, and S. Xu, Point primitivesbased virtual surgery system, IEEE Access, 7, 2019, 46306-46316.
  22. [22] F. Brian, D.S. Frank, K. Athanasios, C. Claudia, R. Louis, andS. Kasra, Virtual reality in neurosurgery: “Can you see it?”- A review of the current applications and future potential,World Neurosurgery, 141, 2020, 291–298.
  23. [23] W.S. Khor, B. Baker, K. Amin, A. Chan, K. Patel, andJ. Wong, Augmented and virtual reality in surgery-the dig-ital surgical environment: applications, limitations and legalpitfalls, Annals of Translational Medicine, 23(4), 2016, doi:10.21037/atm.2016.12.23.
  24. [24] S.L. Delp and F.R. Zajac, Force and moment generating ca-pacity of lower limb muscles before and after tendon length-ening, Clinical Orthopeadics & Related Research, 284, 1992,247–259.
  25. [25] R.M. Satava and S.B.Jones, Current and future applicationsof virtual reality for medicine, Proceedings of the IEEE, 86(3),1998, 484–489.
  26. [26] K. Salisbury, F. Conti, and F. Barbagli, Haptic rendering:Introductory concepts, IEEE Computer Graphics and Appli-cations, 24(2), 2004, 24–32.
  27. [27] S. Jung, et al., A tutorial on unified approach to denavit-hartenberg representation of kinematics of mobile manipulatorsin robotics education, Journal of Institute of Control, Roboticsand Systems, 27(5), 2021, 364–372.
  28. [28] J.J. Craig, Introduction to Robotics Mechanics and Control,1st ed. (Addison-Wesley Pub. Co, 1986).
  29. [29] J. Li, F. Zhao, X. Li, and J. Li, Analysis of robotic workspacebased on Monte Carlo method and the posture matrix, Pro-ceedings of 2016 IEEE International Conference on Controland Robotics Engineering, 2016, 80–84.

Important Links:

Go Back