Jian Yuan, Wenxia Zhang, Hailin Liu, and Hui Li


  1. [1] B. Qin, G. Zhu, G. Gao, et al., A drinking water cri-sis in Lake Taihu, China: linkage to climatic variability andlake management, Environmental Management, 45(1), 2010,105–112.
  2. [2] X. Bo, B. Bailei, H. Yanling, et al., Research status and progressof multi AUV cooperative navigation. Acta Automatica Sinica,41(3), 2015, 445-461.
  3. [3] J.B. De Sousa and G.A. Gon¸calves, Unmanned vehicles forenvironmental data collection, Clean Technol. Environ. Policy,13(2), 2011, 369–380.
  4. [4] D.F. Carlson, A. F¨ursterling, L. Vesterled, et al., An af-fordable and portable autonomous surface vehicle with obsta-cle avoidance for coastal ocean monitoring, HardwareX, 2019,e00059.
  5. [5] J.E. Manley, Unmanned maritime vehicles, 20 years of com-mercial and technical evolution, OCEANS 2016 MTS/IEEE,Monterey, Sep. 2016, 1–6.
  6. [6] A. Tinka, M. Rafiee and A.M. Bayen, Floating sensor networksfor river studies, IEEE Systems Journal, 7(1), 2013, 36–49.
  7. [7] Y. Kaizu, M. Iio, H. Yamada, and N. Noguchi, Developmentof unmanned airboat for water-quality mapping, BiosystemsEngineering, 109(4), 2011, 338–347.
  8. [8] W. Jo, Y. Hoashi, L.L.P. Aguilar, et al., A low-cost and smallUSV platform for water quality monitoring, HardwareX, 6, 2019,e00076.
  9. [9] Y. Peng, W.Q. Wu, M. Liu, et al., USV tracking control basedon cascade GPC-PID, Control Engineering China, 21(2), 2014,245–248.
  10. [10] R. Miao, Z. Dong, L. Wan, et al., Heading control system designfor a micro-USV based on an adaptive expert S-PID algorithm,Polish Maritime Research, 25, 2018, 6–13.
  11. [11] T. Asfihani, D.K. Arif, F.P. Putra, et al., Comparison of LQGand adaptive PID controller for USV heading control, Journal ofPhysics: Conference Series, 1218(1), 2019, 012058.
  12. [12] Mu, D., Zhao, Y., Wang, G., Fan, Y., et al., Course control ofUSV based on fuzzy adaptive guide control, Chinese Control andDecision Conference, 2016, 6433–6437.
  13. [13] F. Yunsheng, S. Xiaojie, W. Guofeng, et al., On fuzzy self-adaptive PID control for USV course, 34th Chinese ControlConference, 2015, 8472–8478.
  14. [14] Y. Yang, J. Du, H. Liu, C. Guo, and A. Abraham, A trajectorytracking robust controller for surface vessels with disturbanceuncertainties, IEEE Transactions on Control Systems Technology,22(4), 2014, 1511–1518.
  15. [15] N. Wang, M.J. Er, and M. Han, Dynamic tanker steeringcontrol using generalized ellipsoidal-basis-function-based fuzzyneural networks, IEEE Transactions on Fuzzy Systems, 23(5),2015, 1414–1427.
  16. [16] D. Qiang, Research on heading control algorithm of doublebody channel double pump water jet propulsion unmanned ship,Command Control and Simulation, 43(04), 2021, 17–20.
  17. [17] W. Qiong, Z. Gang, J. Peng, et al., Nonlinear unmanned shipheading control algorithm based on backstepping, Journal ofHubei University of Technology, 36(02), 2021, 1–4.
  18. [18] Y. Yu, F. Yunsheng, L. Lei, and T. Yuanyuan, Course controland verification of unmanned surface craft based on trajectorylinearization, Journal of Dalian Maritime University, 47(1), 2021,9–17.
  19. [19] G. Bo, Z. Yonghua, and A.I. Jiaoyan, Neural network controlof unmanned ship course based on Kalman filter, ComputerEngineering and Design, 41 (8),2020, 2315–2320.
  20. [20] Le, M.D., et al., A new and effective fuzzy PID autopilot forships, Proceedings of 2003 IEEE International Symposium onComputational Intelligence in Robotics and Automation, Com-putational Intelligence in Robotics and Automation for the NewMillennium (Cat. No. 03EX694), vol. 3, 2003, 1411–1415.
  21. [21] MOOS-Ivp Autonomy Tools Users Manual, 2022. https://oceanai.mit.edu/ivpman/pmwiki/pmwiki.Php?n=IvPTools.Cover

Important Links:

Go Back