3D ELECTRIC FIELD COMPUTATION OF OPTIMISED HIGH-VOLTAGE INSULATOR USING PSO-FEM COUPLED ALGORITHM, 1-6.

Dyhia Doufene,∗ Slimane Bouazabia,∗ and Sid A. Bessedik∗∗

View Full Paper

References

  1. [1] D. Nie, H. Zhang, Z. Chen, et al., Optimization design ofgrading ring and electrical field analysis of 800 kV UHVDCWall bushing, IEEE Transactions on Dielectrics and ElectricalInsulation, 20(4), 2013, 1361–1368.
  2. [2] K. Bhattacharya, S. Chakravorti, and P. K. Mukherjee, Insula-tor contour optimization by a neural network, IEEE Transac-tions on Dielectrics and Electrical Insulation, 8, 2001, 157–161.
  3. [3] W. S. Chen, H. T. Yang, H-Y. Huang, Optimal design ofsupport insulators using hashing integrated genetic algorithmand optimized charge simulation method, IEEE Transac-tions on Dielectrics and Electrical Insulation, 15(2), 2008,426–434.5
  4. [4] W. S. Chen, H. T. Yang, and H. Y. Huang, Contour opti-mization of suspension insulators using dynamically adjustablegenetic algorithms, IEEE Transactions on Power Delivery,25(3), 2010, 1220–1228.
  5. [5] D. Doufene, S. Bouazabia, and A. Haddad, Optimized perfor-mance of cap and pin insulator under wet pollution conditionsusing a mono-objective genetic algorithms, Australian Jour-nal of Electrical and Electronics Engineering, 16(3), 149–162.https://doi.org/10.1080/1448837X.2019.1627740.
  6. [6] S. Banerjee, A. Lahiri, and K. Bhattacharya, Optimization ofsupport insulators used in HV systems using support vectormachine, IEEE Transactions on Dielectrics and ElectricalInsulation, 14, 2007, 360–367.
  7. [7] B. M’hamdi, M. Teguar, and A. Mekhaldi, Optimal designof corona ring on HV composite insulator using PSO ap-proach with dynamic population size, IEEE Transactions onDielectrics and Electrical Insulation, 23(2), 2016, 1048–1057.
  8. [8] D. Nie, H. Zhang, Z. Chen, et al., Optimization design ofgrading ring and electrical field analysis of 800 kV UHVDC Wallbushing, Transactions on Dielectrics and Electrical Insulation,20(4), 2013, 1361–1368.
  9. [9] D. Doufene, S. Benharat, S. Bouazabia, and S. A. Bessedik,Hybrid Grey Wolf and Finite Element Method (GWO-FEM)algorithm for enhancing high voltage insulator string perfor-mance in wet pollution conditions, Engineering, Technology &Applied Science Research, 12(3), 2022, 8765–8771.
  10. [10] D. Doufene, S. Bouazabia, and A. Haddad, Shape and elec-tric performance improvement of an insulator string usingparticles swarm algorithm, IET Science, Measurement &Technology, 14(2), 2020, 198–205. https://doi.org/10.1049/iet-smt.2019.0405.
  11. [11] S. F. Stefenon, C. S. Furtado Neto, T. S. Coelho, et al., Parti-cle swarm optimization for design of insulators of distributionpower system based on finite element method, Electrical Engi-neering, 104, 2021, 615–622. https://doi.org/10.1007/s00202-021-01332-3
  12. [12] D. Doufene, S. Bouazabia, and A. Haddad, Polluted insula-tor optimization using neural network combined with geneticalgorithm, 18th International Symposium on ElectromagneticFields in Mechatronics, Electrical and Electronic Engineering(ISEF), Poland, 2017.
  13. [13] D. Doufene, S. Bouazabia, and A. A. Ladjici, Shape optimiza-tion of a cap and pin insulator in pollution condition usingparticle swarm and neural network, The 5th InternationalConference on Electrical Engineering – Boumerdes (ICEE-B),Boumerdes, Algeria, 2017.
  14. [14] S. Mirjalili, S. M. Mirjalili, and L. Andrew, Grey Wolf optimizer,Advances in Engineering Software, 69, 2014, 46–61.
  15. [15] E. Akbari, M. Mirzaie, M. B. Asadpoor, et al., Effects of discinsulator type and corona ring on electric field and voltagedistribution over 230-kV insulator string by numerical method,Iranian Journal of Electrical and Electronic Engineering, 9,2013, 58–66.
  16. [16] A. J. Phillips, J. Kuffel, et al., Electric fields on AC compositetransmission line insulators, IEEE Transactions on PowerDelivery, 23(2), 2008, 823–830.
  17. [17] V. T. Kontargyri, I. F. Gonos, et al., Measurement andsimulation of the electric field of high voltage suspensioninsulators, European Transactions on Electrical Power, 19,2009, 509–517.
  18. [18] Y. Qing, S. Wenxia, D. Jiazhuo, et al., New optimiza-tion method on electric field distribution of composite in-sulator, Annual Report Conference on Electrical Insula-tion and Dielectric Phenomena, West Lafayette, IN, 2010,https://doi.org/10.1109/CEIDP.2010.5724046.
  19. [19] T. Doshi, R. S. Gorur, and J. Hunt, Electric field computation ofcomposite line insulators up to 1200 kV AC, IEEE Transactionson Dielectrics and Electrical Insulation, 18(3), 2011, 861–867.
  20. [20] D. Doufene, S. Bouazabia, and R. Bouhaddiche, Heating dis-sipation study of a pollution layer on a cap and pin insula-tor, 2018 International Conference on Communications andElectrical Engineering (ICCEE), El Oued, Algeria, 2018, 1–4,https://doi.org/10.1109/CCEE.2018.8634549.
  21. [21] Y. Zhang, L. Li, et al., Flashover performance test withlightning impulse and simulation analysis of different insulatorsin a 110 kV double-circuit transmission tower, Energies, 11,2018, 659.
  22. [22] Global insulator Groupe, Isolateurs pour lignes de transmissionet stations de distribution `a tension de 0,4 `a 1150 KV’,Catalogue des produits, 2012.
  23. [23] R. Cook, et al., Concepts and applications of finite elementanalysis, John Wiley & Sons, 1989.
  24. [24] R. Eberhart and J. Kennedy, A new optimizer using particleswarm theory, Sixth Int’l. Sympos. Micro Machine and HumanScience, Nagoya, Japan, 1995, 39–43.
  25. [25] D. P. Rini, S. M. Shamsuddin, S. S. Yuhaniz, Particleswarm optimization: Technique, system and challenges, In-ternational Journal of Computer Applications, 14(1), 2011,19–27.

Important Links:

Go Back