KINEMATIC ANALYSIS OF THE VARIABLE HEIGHT ROTATING MECHANISM FOR END-TRACTION UPPER LIMB REHABILITATION ROBOT

Liang Dongtai,∗ Yongfei Feng,∗ Yang Shengye,∗ Tang Min,∗∗ Wu Liangda,∗ Jin Di,∗ and Luige Vladareanu∗∗∗

References

  1. [1] S.S. Virani, A. Alonso, E. Benjamin, et al., Heart disease andstroke statistics—2020 Update: A report from the Americanheart association, Circulation, 141(9), 2020, 757.
  2. [2] R. Iandolo, F. Marini, M. Semprini, et al., Perspectives andchallenges in robotic neurorehabilitation, Applied Sciences,9(15), 2019, 1–29.
  3. [3] C.T. Hau, D. Gouwanda, A.A. Gopalai, et al., Design of anklerehabilitation robot with antagonistic nitinol wire actuators,International Journal of Robotics and Automation, 35(1),2020, 35–42.
  4. [4] W.S. Kim, S. Cho, J. Ku, et al., Clinical application of virtualreality for upper limb motor rehabilitation in stroke: Review oftechnologies and clinical evidence, Journal of Clinical Medicine,9(10), 2020, 1–20.
  5. [5] T. Gueye, D. Miriama, V. Rogalewicz, et al., Early post-strokerehabilitation for upper limb motor function using virtualreality and exoskeleton: Equally efficient in older patients,Polish Journal of Neurology and Neurosurgery, 55(1), 2021,91–96.
  6. [6] A. Mancisidor, A. Zubizarreta, I. Cabanes, et al., Inclusive andseamless control framework for safe robot-mediated therapyfor upper limbs rehabilitation, Mechatronics, 58, 2019, 70–79.
  7. [7] R. Krishnamurthi, T. Ikeda, V. Feigin, et al., Global, regionaland country-specific burden of ischaemic stroke, intracerebralhaemorrhage and subarachnoid haemorrhage: A systematicanalysis of the global burden of disease study 2017, Neuroepi-demiology, 54, 2017, 171–179.
  8. [8] A.M. Mamou, and N. Saadia, A control strategy for developedlower limbs robotic rehabilitation chair, International Journalof Robotics and Automation, 32(6), 2017, 577–589.
  9. [9] Q.Z. Yang, Analysis on state of the art of upper limb rehabil-itation robots, Robot, 35(05), 2013, 630–640.
  10. [10] J. Rosen, J.C. Perry, N. Manning, et al., The human armkinematics and dynamics during daily activities – Toward a 7DOF upper limb powered exoskeleton, Proc. 12th InternationalConference on Advanced Robotics, Seattle, WA, 2016, 532–539.
  11. [11] H. Banerjee, Z.T.H. Tse, and H.L. Ren, Soft robotics withcompliance and adaptation for biomedical applications andforthcoming challenges, International Journal of Robotics andAutomation, 33(1), 2018, 69–80.
  12. [12] A, Abane. M. Guiatni, D. Fekrache, et al., Mechatronicsdesign, modeling and preliminary control of a 5 DOF upperlimb active exoskeleton, Proc. 13th International Conferenceon Informatics in Control, Automation and Robotics, 2016,398–405.
  13. [13] R. Fellag, T. Benyahia, M. Drias, et al., Sliding mode control ofa 5 DOFs upper limb exoskeleton robot, Proc. 5th InternationalConference on Electrical Engineering-Boumerdes, Boumerdes,Algeria, 2017, 1–6.
  14. [14] J. Li, Q. Cao, M. Dong, et al., Compatibility evaluation ofa 4-DOF ergonomic exoskeleton for upper limb rehabilitation,Mechanism and Machine Theory, 156(2021), 2021, 1–15.
  15. [15] C. Li, Z. Rusak, and Y.M. Hou, Upper limb motor rehabilitationintegrated with video games focusing on training fingers’ finemovements, International Journal of Robotics and Automation,29(4), 2014, 359–368.
  16. [16] H.I. Krebs, N. Hogan, M.L. Aisen, et al., Robot-aided neu-rorehabilitation, IEEE Transactions on Rehabilitation Engi-neering, 6, 1998, 75–87.
  17. [17] L.Y. Li, J.H. Han, X.P. Li, et al., A new structure of end-effectortraction upper limb rehabilitation robot, IEEE InternationalConference on Real-time Computing and Robotics, Xining,China, 2021, 650–655.
  18. [18] J. Hunt, H. Lee, and P. Artemiadis, A novel shoulder exoskele-ton robot using parallel actuation and a passive slip interface,Journal of Mechanisms and Robotics, 9(1), 2017, 1–7.
  19. [19] J. Hunt, P. Artemiadis, and H. Lee, Optimizing stiffness ofa novel parallel-actuated robotic shoulder exoskeleton for adesired task or workspace, IEEE International Conference onRobotics and Automation, Brisbane, QLD, 2018, 6745–6751.
  20. [20] H. Guang, L.H. Ji, Y.Y. Shi, et al. Dynamic modeling andinteractive performance of PARM: A parallel upper-limb re-habilitation robot using impedance control for patients afterstroke, Journal of Healthcare Engineering, 2018, 2018, 1–11.
  21. [21] P. Tucan, C. Vaida, N. Plitea, et al., Risk-based assessmentengineering of a parallel robot used in post-stroke upper limbrehabilitation, Sustainability, 11(2893), 2019, 1–28.
  22. [22] C. Vaida, N. Plitea, G. Carbone, et al., Innovative developmentof a spherical parallel robot for upper limb rehabilitation,International Journal of Mechanisms and Robotic Systems,4(4), 2018, 256–276.
  23. [23] M.A. Laribi, G. Carbone, and S. Zeghloul, On the optimal de-sign of cable driven parallel robot with a prescribed workspacefor upper limb rehabilitation tasks, Journal of Bionic Engi-neering, 16(3), 2019, 503–513.11
  24. [24] I.B. Hamida, M.A. Laribi, A. Mlika, et al., Multi-Objectiveoptimal design of a cable driven parallel robot for rehabilitationtasks, Mechanism and Machine Theory, 156(104141), 2021,1–24.
  25. [25] J. Fong, V. Crocher, T. Ying, et al., EMU: A transparent3D robotic manipulandum for upper-limb rehabilitation, In-ternational Conference on Rehabilitation Robotics, 2017, 2017,771–776
  26. [26] H.B. Wang, Y.G. Yan, X.C. Wang, et al., Design of endtraction finger rehabilitation robot and its compliance controlmethod, Chinese Science and Technology Paper, 15(07), 2021,743–749.
  27. [27] L. Peng, Z.G. Hou, L. Peng, et al., Robot assisted rehabili-tation of the arm after stroke: Prototype design and clinicalevaluation, Science China (Information Sciences), 7(60), 2017,252–258.
  28. [28] S.H. Wang, Research on Algorithm for Multiplying the Fre-quency of the Sensor Signal and Control System for the ParallelMechanism on Hip Joint. Doctoral Diss., University of Scienceand Technology of China, Hefei, China, 2019.
  29. [29] Z. Huang, Spatial Mechanism Kinetics, vol. 1 (China MachinePress, Beijing, 1991), 126–141.
  30. [30] R.G. Wang, M.H. Huang, and Y.H. Li, et al. Study on thedesign and application of a novel 6-DOF reconfigurable parallelmechanism, Machine Design and Research, 34(06), 2018, 47–51.
  31. [31] Z. Huang, Y.S. Zhao, and T.S. Zhao, Advanced Spatial Mecha-nism, vol. 2 (Higher Education Press, Beijing, 2016) 115–135.

Important Links:

Go Back