HEADING AND SPEED JOINT CONTROL OF DOUBLE-PUSH USV BASED ON FUZZY PID

Jian Yuan, Wenxia Zhang, Hailin Liu, and Hui Li

References

  1. [1] B. Qin, G. Zhu, G. Gao, et al., A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management, Environmental Management, 45(1), 2010, 105–112.
  2. [2] X. Bo, B. Bailei, H. Yanling, et al., Research status and progress of multi AUV cooperative navigation. Acta Automatica Sinica, 41(3), 2015, 445-461.
  3. [3] J.B. De Sousa and G.A. Gon¸calves, Unmanned vehicles for environmental data collection, Clean Technol. Environ. Policy, 13(2), 2011, 369–380.
  4. [4] D.F. Carlson, A. Fürsterling, L. Vesterled, et al., An affordable and portable autonomous surface vehicle with obstacle avoidance for coastal ocean monitoring, HardwareX, 2019, e00059.
  5. [5] J.E. Manley, Unmanned maritime vehicles, 20 years of commercial and technical evolution, OCEANS 2016 MTS/IEEE, Monterey, Sep. 2016, 1–6.
  6. [6] A. Tinka, M. Rafiee and A.M. Bayen, Floating sensor networks for river studies, IEEE Systems Journal, 7(1), 2013, 36–49.
  7. [7] Y. Kaizu, M. Iio, H. Yamada, and N. Noguchi, Development of unmanned airboat for water-quality mapping, Biosystems Engineering, 109(4), 2011, 338–347.
  8. [8] W. Jo, Y. Hoashi, L.L.P. Aguilar, et al., A low-cost and small USV platform for water quality monitoring, HardwareX, 6, 2019, e00076.
  9. [9] Y. Peng, W.Q. Wu, M. Liu, et al., USV tracking control based on cascade GPC-PID, Control Engineering China, 21(2), 2014, 245–248.
  10. [10] R. Miao, Z. Dong, L. Wan, et al., Heading control system design for a micro-USV based on an adaptive expert S-PID algorithm, Polish Maritime Research, 25, 2018, 6–13.
  11. [11] T. Asfihani, D.K. Arif, F.P. Putra, et al., Comparison of LQG and adaptive PID controller for USV heading control, Journal of Physics: Conference Series, 1218(1), 2019, 012058.
  12. [12] Mu, D., Zhao, Y., Wang, G., Fan, Y., et al., Course control of USV based on fuzzy adaptive guide control, Chinese Control and Decision Conference, 2016, 6433–6437.
  13. [13] F. Yunsheng, S. Xiaojie, W. Guofeng, et al., On fuzzy selfadaptive PID control for USV course, 34th Chinese Control Conference, 2015, 8472–8478.
  14. [14] Y. Yang, J. Du, H. Liu, C. Guo, and A. Abraham, A trajectory tracking robust controller for surface vessels with disturbance uncertainties, IEEE Transactions on Control Systems Technology, 22(4), 2014, 1511–1518.
  15. [15] N. Wang, M.J. Er, and M. Han, Dynamic tanker steering control using generalized ellipsoidal-basis-function-based fuzzy neural networks, IEEE Transactions on Fuzzy Systems, 23(5), 2015, 1414–1427.
  16. [16] D. Qiang, Research on heading control algorithm of double body channel double pump water jet propulsion unmanned ship, Command Control and Simulation, 43(04), 2021, 17–20.
  17. [17] W. Qiong, Z. Gang, J. Peng, et al., Nonlinear unmanned ship heading control algorithm based on backstepping, Journal of Hubei University of Technology, 36(02), 2021, 1–4.
  18. [18] Y. Yu, F. Yunsheng, L. Lei, and T. Yuanyuan, Course control and verification of unmanned surface craft based on trajectory linearization, Journal of Dalian Maritime University, 47(1), 2021, 9–17.
  19. [19] G. Bo, Z. Yonghua, and A.I. Jiaoyan, Neural network control of unmanned ship course based on Kalman filter, Computer Engineering and Design, 41 (8),2020, 2315–2320.
  20. [20] Le, M.D., et al., A new and effective fuzzy PID autopilot for ships, Proceedings of 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation, Computational Intelligence in Robotics and Automation for the New Millennium (Cat. No. 03EX694), vol. 3, 2003, 1411–1415.
  21. [21] MOOS-Ivp Autonomy Tools Users Manual, 2022. https:// oceanai.mit.edu/ivpman/pmwiki/pmwiki.Php?n=IvPTools.Cover

Important Links:

Go Back