INDOOR LOCALIZATION SYSTEM OF ROS MOBILE ROBOT BASED ON VISIBLE LIGHT COMMUNICATION

Shihuan Chen, Wanlin Liang, Shangsheng Wen, Mouxiao Huang, Ruihong Cen, and Weipeng Guan

References

  1. [1] W. Guan et al., Robot localization and navigation using visible light positioning and SLAM fusion, Journal of Lightwave Technology, 39(22), 2021, 7040–7051. https://doi.org/10.1109/JLT.2021.3113358.
  2. [2] L. Huang, S. Wen, Z. Yan, H. Song, S. Su, and W. Guan, Single LED positioning scheme based on angle sensors in robotics, Applied Optics, 60, 2021, 6275–6287.
  3. [3] P. Keikhosrokiani, N. Mustaffa, N. Zakaria and M.I. Sarwar, Wireless Positioning Techniques and Location-based Services: A Literature Review, Lecture Notes in Electrical Engineering (Springer Netherlands, 2013).
  4. [4] Y. Chouchang and S. Huai-rong, WiFi-based indoor positioning, IEEE Communications Magazine, 53(3), 2015, 150–157.
  5. [5] F. Topak, M.K. Pekericli, and A.M. Tanyer, Technological viability assessment of bluetooth low energy technology for indoor localization, Journal of Computing in Civil Engineering, 32(5), 2018, 04018034.
  6. [6] C.T. Li, J.C.P. Cheng, and K. Chen, Top 10 technologies for indoor positioning on construction sites, Automation in Construction, 118, 2020, 103309, ISSN 0926-5805, https://doi.org/10.1016/j.autcon.2020.103309.
  7. [7] Z. Zhou, S. Wen, and W. Guan, RSE-based optical camera communication in underwater scenery with bubble degradation, Optical Fiber Communication Conference (Optical Society of America, 2021), M2B. 2.
  8. [8] Z. Dongfang, C. Gang, and A.F. Jay, Joint measurement and trajectory recovery in visible light communication, IEEE Transactions on Control Systems Technology, 25(1), 2017, 247–261.
  9. [9] W. Guan, S. Wen, L. Liu, and H. Zhang, High-precision indoor positioning algorithm based on visible light communication using complementary metal–oxide–semiconductor image sensor, Optical Engineering, 58(2), 2019, 024101.
  10. [10] W. Guan, Z. Liu, S. Wen, H. Xie and X. Zhang, Visible light dynamic positioning method using improved Camshift-Kalman algorithm, IEEE Photonics Journal, 11(6), 2019, 1–22, Art no. 7906922, https://doi.org/10.1109/JPHOT.2019.2944080.
  11. [11] H. Lv, L. Feng, A. Yang, B. Lin, H. Huang, and S. Chen, Light emitting diode positioning system basedon a lamp stripe, Optical Engineering, 58(4), 2019, 046103, https://doi.org/10.1117/1.OE.58.4.046103
  12. [12] X. Yu, J. Wang, and H. Lu, Single LED-based indoor positioning system using multiple photodetectors, IEEE Photonics Journal, 10(6), 2018, 1–8, Art no. 7909108, https://doi.org/10.1109/JPHOT.2018.2848947. 10
  13. [13] H. Song, S. Wen, D. Yuan, L. Huang, Z. Yan, and W. Guan, Robust LED region-of-interest tracking for visible light positioning with low complexity, Optical Engineering, 60(5), 2021, 053102, https://doi.org/10.1117/1.OE.60.5.053102.
  14. [14] H. Song, S. Wen, C. Yang, D. Yuan, and W. Guan, Universal and effective decoding scheme for visible light positioning based on optical camera communication, Electronics, 10(16), 2021, 1925. https://doi.org/10.3390/electronics10161925.
  15. [15] W. Guan, et al., “Robot localization and navigation using visible light positioning and SLAM fusion,” Journal of Lightwave Technology, 39(22), 2021, 7040–7051, https://doi.org/10.1109/JLT.2021.3113358.
  16. [16] W. Guan, S. Chen, S. Wen, Z. Tan, H. Song, and W. Hou, High-accuracy robot indoor localization scheme based on robot operating system using visible light positioning, IEEE Photonics Journal, 12(2), 2020, 1–16, Art no. 7901716, https://doi.org/10.1109/JPHOT.2020.2981485.
  17. [17] Z. Yan, W. Guan, S. Wen, L. Huang, and H. Song, Multirobot cooperative localization based on visible light positioning and odometer, IEEE Transactions on Instrumentation and Measurement, 70, 2021, 1–8, Art no. 7004808, https://doi.org/10.1109/TIM.2021.3086887.
  18. [18] B.J. Stephens, State estimation for force-controlled humanoid balance using simple models in the presence of modeling error, IEEE International Conference on Robotics & Automation, 2011.
  19. [19] R. Miyagusuku, A. Yamashita, and H. Asama, Data information fusion from multiple access points for WiFi-based selflocalization, IEEE Robotics and Automation Letters, 4(2), 2019, 269–276.
  20. [20] S. Xu, W. Chou, and H. Dong, A robust indoor localization system integrating visual localization aided by CNN-based image retrieval with Monte Carlo localization, Sensors, 19(2), 2019, 249.
  21. [21] X. Canyu, G. Weipeng, W. Yuxiang, F. Liangtao, and C. Ye, The LED-ID detection and recognition method based on visible light positioning using proximity method, IEEE Photonics Journal, 10(2), 2018, 1–16.
  22. [22] P. Qi, W. Guan, Y. Wu, C. Ye, X. Canyu, and W. Pengfei, Three-dimensional high-precision indoor positioning strategy using Tabu search based on visible light communication, Optical Engineering, 57(1), 2018, 1.
  23. [23] M. Huang, W. Guan, Z. Fan, Z. Chen, J. Li and B. Chen, Improved target signal source tracking and extraction method based on outdoor visible light communication using a camshift algorithm and Kalman Filter, Sensors, 18(12), 2018, 4173.
  24. [24] W. Ke, C. Jingjing, L. Zhiwei, and H. Zhen, Demodulation method for distorted carrier of visible light communication in indoor positioning for autonomous robots, 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM), Hefei, China, 2017.
  25. [25] L. Zhitian, Y. Aiying, L. Huichao, F. Lihui and S. Wenzhan, Fusion of visible light indoor positioning and inertial navigation based on particle filter, IEEE Photonics Journal, 9(5), 2017, 7906613.
  26. [26] L. Zhitian, L. Feng, and Y. Aiying, Fusion based on visible light positioning and inertial navigation using extended Kalman Filters, Sensors, 17(5), 2017, 1093.
  27. [27] M. Alajlan, I. Chaari, A. Koubaa, H. Bennaceur, A. Ammar, and H. Youssef, Global robot path planning using GA for large grid maps: modelling, performance and experimentation, International Journal of Robotics and Automation (2016). https://doi.org/10.2316/Journal.206.2016.6.2064602.
  28. [28] M.M. Mohamed, J. Gu, and J. Luo, Modular design of neurosurgical robotic system, International Journal of Robotics and Automation, 2018. https://doi.org/10.2316/ Journal.206.2018.5.206-5093.
  29. [29] G. Weipeng, W. Yuxiang, X. Canyu, F. Liangtao, L. Xiaowei, and C. Yingcong, Performance analysis and enhancement for visible light communication using CMOS sensors, Optics Communications, 410, 2018, 531–551.
  30. [30] G. Weipeng, W. Yuxiang, W. Shangsheng, C. Hao, C. Yang, and Z. Zhang, A novel three-dimensional indoor positioning algorithm design based on visible light communication, Optics Communications, 392, 2017, 282–293.
  31. [31] H. Heqing, Y. Aiying, F. Lihui, N. Guoqiang, and G. Peng, Indoor positioning method based on metameric white light sources and subpixels on a color image sensor, IEEE Photonics Journal, 2016, 1–1.
  32. [32] R. Mishra and A. Javed, ROS based service robot platform, 2018 4th International Conference on Control, Automation and Robotics (ICCAR), 2018.
  33. [33] P. YoonSeok, C. HanCheol, J. RyuWoon, and L. TaeHoon, Important concepts of ROS, ROS Robot Programming, Seoul, ROBOTIS Co., Ltd., 2017, 40–89.
  34. [34] H. Song, et al., Robust LED region-of-interest tracking for visible light positioning with low complexity, Optical Engineering, 60(5), 2021, 053102.
  35. [35] R. Miyagusuku, A. Yamashita, and H. Asama, Data information fusion from multiple access points for WiFi-based selflocalization, IEEE Robotics and Automation Letters, 4(2), 2019, 269–276.
  36. [36] M. Huang, W. Guan, Z. Fan, Z. Chen, J. Li, and B. Chen, Improved target signal source tracking and extraction method based on outdoor visible light communication using a camshift algorithm and Kalman Filter, Sensors, 18(12), 2018, 4173.
  37. [37] Raspberry Pi Foundation, Raspberry Pi 3 Model B Raspberry Pi, Raspberry Pi Foundation, https://www.raspberrypi.org/ products/raspberry-pi-3-model-b/. [Accessed 23 September 2018].

Important Links:

Go Back