A NOVEL PNEUMATIC SOFT ACTUATOR WITH MECHANICAL VARIABLE STIFFNESS

Shibo Cai, Zetong Li, Xing Fang, Qinghua Yang, and Guanjun Bao

References

  1. [1] G. Bao, H. Fang, L. Chen, Y. Wan, F. Xu, Q. Yang, and L. Zhang, Soft robotics: Academic insights and perspectives through bibliometric analysis, Soft Robotics, 5(3), 2018, 229– 241.
  2. [2] M. Calisti, A. Arienti, M.E. Giannaccini, M. Follador, M. Giorelli, M. Cianchetti, B. Mazzolai, C. Laschi, and P. Dario, Study and fabrication of bioinspired octopus arm mockups tested on a multipurpose platform, Proc. 2010 3rd IEEE RAS & EMBS International Conf. on Biomedical Robotics and Biomechatronics, TKY, 2010, 461–466.
  3. [3] T. Zheng, D.T. Branson, E. Guglielmino, and D.G. Caldwell, A 3D dynamic model for continuum robots inspired by an octopus arm, Proc. 2011 IEEE International Conf. on Robotics and Automation, SHH, 2011, 3652–3657.
  4. [4] L. Margheri, C. Laschi, and B. Mazzolai, Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements, Bioinspiration & Biomimetics, 7(2), 2012, 025004.
  5. [5] B. Mazzolai, L. Margheri, M. Cianchetti, P. Dario, and C. Laschi, Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions, Bioinspiration & Biomimetics, 7(2), 2012, 025005.
  6. [6] K. Nakajima, H. Hauser, R. Kang, E. Guglielmino, D.G. Caldwell, and R. Pfeifer, A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm, Frontiers in Computational Neuroscience, 7, 2013, 91.
  7. [7] N. Giri, & I. Walker, Continuum robots and underactuated grasping, Mechanical Sciences, 2(1), 2011, 51–58.
  8. [8] A.D. Kapadia, I.D. Walker, D.M. Dawson, and E. Tatlicioglu, A model-based sliding mode controller for extensible continuum robots, Proc. 9th WSEAS International Conf. on Signal Processing, Robotics and Automation, CBG, 2009, 113–120.
  9. [9] W. McMahan, V. Chitrakaran, M. Csencsits, D. Dawson, I.D. Walker, B.A. Jones, and C.D. Rahn, Field trials and testing of the OctArm continuum manipulator, Proc. 2006 IEEE International Conf. on Robotics and Automation, Orlando, FL, 2006, 2336–2341.
  10. [10] W. McMahan and I.D. Walker, Octopus-inspired graspsynergies for continuum manipulators, Proc. 2008 IEEE International Conf. on Robotics and Biomimetics, BKK, 2009, 945–950.
  11. [11] A. Crespi, A. Badertscher, A. Guignard, and A.J. Ijspeert, AmphiBot I: an amphibious snake-like robot, Robotics and Autonomous Systems, 50(4), 2005, 163–175.
  12. [12] D. Morales, E. Palleau, M.D. Dickey, and O.D. Velev, Electroactuated hydrogel walkers with dual responsive legs, Soft Matter, 10(9), 2014, 1337–1348.
  13. [13] S. Nakamaru, S. Maeda, Y. Hara, and S. Hashimoto, Development of novel self-oscillating gel actuator for achievement of chemical robot, Proc. 2009 IEEE/RSJ International Conf. on Intelligent Robots and Systems, St Louis, MO, 2009, 4319–4324.
  14. [14] B. Trimmer and J. Issberner, Kinematics of soft-bodied, legged locomotion in Manduca sexta larvae, The Biological Bulletin, 212(2), 2007, 130–142.
  15. [15] Y. Cai, S. Bi, and L. Zheng, Design and experiments of a robotic fish imitating cow-nosed ray, Journal of Bionic Engineering, 7(2), 2010, 120–126.
  16. [16] Z. Chen, T.I. Um, and H. Bart-Smith, A novel fabrication of ionic polymer–metal composite membrane actuator capable of 3-dimensional kinematic motions, Sensors and Actuators A: Physical, 168(1), 2011, 131–139.
  17. [17] A. D. Marchese, C.D. Onal, and D. Rus, Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators, Soft Robotics, 1(1), 2014, 75–87.
  18. [18] R.F. Shepherd, F. Ilievski, W. Choi, S.A. Morin, A.A. Stokes, A.D. Mazzeo, X. Chen, M. Wang, and G.M. Whitesides, Multigait soft robot, Proceedings of the National Academy of Sciences, 108(51), 2011, 20400–20403.
  19. [19] S.H. Song, M.S. Kim, H. Rodrigue, J.Y. Lee, J.E. Shim, M.C. Kim, and S.H. Ahn, Turtle mimetic soft robot with two swimming gaits, Bioinspiration & Biomimetics, 11(3), 2016, 036010.
  20. [20] H.J. Kim, S.H. Song, and S.H. Ahn, A turtle-like swimming robot using a smart soft composite (SSC) structure, Smart Materials and Structures, 22(1), 2012, 014007.
  21. [21] J.J. Hubbard, M. Fleming, V. Palmre, D. Pugal, K.J. Kim, and K.K. Leang, Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics, IEEE Journal of Oceanic Engineering, 39(3), 2014, 540–551.
  22. [22] F. Renda, M. Giorelli, M, Calisti, M. Cianchetti, and C. Laschi, Dynamic model of a multibending soft robot arm driven by cables, IEEE Transactions on Robotics, 30(5), 2014, 1109–1122.
  23. [23] K.C. Ramanathan, D. Ganapathy, J.A. Dhanraj, and M. Mohan, Design and development of 6 DOF bipedal robot and its walking gaits, International Journal of Robotics & Automation, 36(1), 2021, 44–51.
  24. [24] N. Cheng, G. Ishigami, S. Hawthorne, H. Chen, M. Hansen, M. Telleria, R. Playter, and K. Iagnemma, Design and analysis of a soft mobile robot composed of multiple thermally activated joints driven by a single actuator, Proc. 2010 IEEE International Conf. on Robotics and Automation, Anchorage, AK, 2010, 5207–5212.
  25. [25] M.J. Telleria, M. Hansen, D. Campbell, A. Servi, and M.L. Culpepper, Modeling and implementation of solder-activated joints for single-actuator, centimeter-scale robotic mechanisms, Proc. 2010 IEEE International Conf. on Robotics and Automation, Anchorage, AK, 2010, 1681–1686.
  26. [26] C. Majidi and R.J. Wood, Tunable elastic stiffness with microconfined magnetorheological domains at low magnetic field, Applied Physics Letters, 97(16), 2010, 164104.
  27. [27] K. Harada, K. Tsubouchi, M.G. Fujie, and T. Chiba, Micro manipulators for intrauterine fetal surgery in an open MRI, Proc. 2005 IEEE International Conf. on Robotics and Automation, BCN, 2005, 502–507.
  28. [28] M. Cianchetti, T. Ranzani, G. Gerboni, I. De Falco, C. Laschi, and A. Menciassi, STIFF-FLOP surgical manipulator: Mechanical design and experimental characterization of the single module, Proc. 2013 IEEE/RSJ International Conf. on Intelligent Robots and Systems, TKY, 2013, 3576–3581.
  29. [29] I. De Falco, M. Cianchetti, and A. Menciassi, A soft multimodule manipulator with variable stiffness for minimally invasive surgery, Bioinspiration & Biomimetics, 12(5), 2017, 056008.
  30. [30] Y. Li, Y. Chen, Y. Yang, and Y. Wei, Passive particle jamming and its stiffening of soft robotic grippers, IEEE Transactions on Robotics, 33(2), 2017, 446–455. 474
  31. [31] A. Jiang, K. Althoefer, P. Dasgupta, and T. Nanayakkara, Granular jamming for minimally invasive surgeries, Journal of Endourology, 26, 2012, A403–A404.
  32. [32] Y. Yang, Y. Chen, Y. Wei, and Y. Li, Novel design and three-dimensional printing of variable stiffness robotic grippers, Journal of Mechanisms and Robotics, 8(6), 2016, 061010.
  33. [33] N.G. Cheng, M.B. Lobovsky, S.J. Keating, A.M. Setapen, K.I. Gero, A.E. Hosoi, and K.D. Iagnemma, Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media, Proc. 2012 IEEE International Conf. on Robotics and Automation, St Paul, MN, 2012, 4328– 4333.
  34. [34] J.R. Amend, E. Brown, N. Rodenberg, H.M.Jaeger, & H. Lipson, A positive pressure universal gripper based on the jamming of granular material, IEEE Transactions on Robotics, 28(2), 2012, 341–335.
  35. [35] P. Jiang, Y.D. Yang, M.Z.Q. Chen, Y.H. Chen, A variable stiffness gripper based on differential drive particle jamming, Bioinspiration & Biomimetics, 14(3), 2019, 036009.
  36. [36] D.S. Shah, E.J. Yang, M.C. Yuen, E.C. Huang, and R. KramerBottiglio, Jamming skins that control system rigidity from the surface, Advanced Functional Materials, 31(1), 2020, 2006915.
  37. [37] A. Saleki, and M.M. Fateh, Adaptive model-free voltage control of robot manipulators, International Journal of Robotics & Automation, 35(3), 2020, 181–188.
  38. [38] J.T. Yang, Y. Zeng, and Y.H. Yin, Adaptive robust control with extended state observer for human-robot impedance. International Journal of Robotics & Automation, 31(1), 2020, 1–12.

Important Links:

Go Back