Qizhi Wang, and Xiaoxia Wang


  1. [1] L.M. Elshenawy and T.A. Mahmoud, Fault diagnosis of time-varying processes using modified reconstruction-based contri-butions, Journal of Process Control, 70(10), 2018, 12–23.https://doi.org/10.1016/j.jprocont.2018.07.017.
  2. [2] Z.A. Jaffery, A.K. Dubey, Irshad, and A. Haque, Schemefor predictive fault diagnosis in photo-voltaic modules usingthermal imaging, Infrared Physics & Technology, 83(6), 2017,182–187. https://doi.org/10.1016/j.infrared.2017.04.015
  3. [3] M. Zhang, K.S. Wang, D.D. Wei, and M.J. Zuo, Amplitudesof characteristic frequencies for fault diagnosis of planetarygearbox, Journal of Sound and Vibration, 432, 13(10) 2018,119–132. https://doi.org/10.1016/j.jsv.2018.06.011
  4. [4] X.G. Wang, R. Jie, and S. Liu, Distribution adaptationand manifold alignment for complex processes fault diagno-sis, Knowledge-Based Systems, 156, 15(9), 2018, 100–112.https://doi.org/10.1016/j.knosys.2018.05.023
  5. [5] O. Elimelech and R. Stern, M. Kalech, Structural ab-straction for model-based diagnosis with a strong faultmodel, Knowledge-Based Systems, 161, 14(8), 2018, 357–374.https://doi.org/10.1016/j.knosys.2018.07.039
  6. [6] Q.H. Zhang, Adaptive Kalman filter for actuatorfault diagnosis, Automatica, 93(7), 2018, 333–342.https://doi.org/10.1016/j.automatica.2018.03.075
  7. [7] H. Shahnazari and P. Mhaskar, Distributed fault diagno-sis for networked nonlinear uncertain systems, Comput-ers & Chemical Engineering, 115, 12(7), 2018, 22–33.https://doi.org/10.1016/j.compchemeng.2018.03.026
  8. [8] H. Liu, J.Z. Zhou, Y. Zheng, W. Jiang, and Y.C. Zhang, Faultdiagnosis of rolling bearings with recurrent neural network-based auto encoders, ISA Transactions, 77(6), 2018, 167–178.https://doi.org/10.1016/j.isatra.2018.04.005
  9. [9] B. Mrugalska, A bounded-error approach to actuator faultdiagnosis and remaining useful life prognosis of Takagi-Sugeno fuzzy systems, ISA Transactions, 80, 2018, 257–266.https://doi.org/10.1016/j.isatra.2018.07.010
  10. [10] A. Ayodeji and Y.K. Liu, Support vector ensemble for in-cipient fault diagnosis in nuclear plant components, Nu-clear Engineering and Technology, 50(8), 2018, 1306–1313.https://doi.org/10.1016/j.net.2018.07.013
  11. [11] I. Martin-Diaz, D. Morinigo-Sotelo, O. Duque-Perez, R. A.Osornio-Rios and R.J. Romero-Troncoso, Hybrid algorith-mic approach oriented to incipient rotor fault diagnosis oninduction motors, ISA Transactions, 80, 2018, 427–438.https://doi.org/10.1016/j.isatra.2018.07.033
  12. [12] K. Indriawati and N. Sebe, Fault tolerant method on positioncascade control of DC servo system, Mechatronic Systems andControl, 48(2), 2020, 144–151. doi: 10.2316/J.2020.201-0094
  13. [13] H.T. Jiang, Q. Chang, Y.L. Wang, and X.J. Xie, Optimizationof the active disturbance rejection control of a four-rotoraircraft, Mechatronic Systems and Control, 48(2), 2020, 87–93.doi:10.2316/J.2020.201-0017
  14. [14] J. He, L.C. Shi, C.F. Zhang, J.H. Liu, B.C. Yang, and X.T. Zuo,Optimal adhesion braking control of trains based on parameterestimation and sliding mode observer, Mechatronic Systemsand Control, 48(4), 2020, 222–230. doi: 10.2316/J.2020.201-0042
  15. [15] S.X. Ding, L.L. Li, and M. Krger, Application of random-ized algorithms to assessment and design of observer-basedfault detection systems, Automatica, 107, 2019, 175–182.https://doi.org/10.1016/j.automatica.2019.05.037
  16. [16] Z.H. Wang, C.C. Lim, P. Shi, and Y. Shen, H-/L∞fault detection observer design for linear parameter-varyingsystems, IFAC-PapersOnLine, 50(1), 2017, 15271–15276.https://doi.org/10.1016/j.ifacol.2017.08.2409
  17. [17] M. Pourasghar, V. Puig, and C. Ocampo-Martinez, Char-acterisation of interval-observer fault detection and isola-tion properties using the set-invariance approach, Jour-nal of the Franklin Institute, 357(3), 2019, 1853–1886.https://doi.org/10.1016/j.jfranklin.2019.11.027
  18. [18] J.C.L. Chan, C.P. Tan, H. Trinhb, M.A.S. Kamal, Y.S. Chiew,Robust fault reconstruction for a class of non-infinitely ob-servable descriptor systems using two sliding mode observersin cascade, Applied Mathematics and Computation, 350, 2019,78–92. https://doi.org/10.1016/j.amc.2018.12.071
  19. [19] C. Liu, G. Vukovich, K.K. Shi, and Z.W. Sun, Robust faulttolerant nonfragile H attitude control for spacecraft via stochas-tically intermediate observer, Advances in Space Research,62(9), 2018, 2631–2648. https://doi.org/10.1016/j.asr.2018.07.026100
  20. [20] S. Makni, M. Bouattour, and M. Chaabane, Robust observerbased Fault Tolerant Tracking Control for T–S uncertain sys-tems subject to sensor and actuator faults, ISA Transactions,88, 2019, 1–11. https://doi.org/10.1016/j.isatra.2018.11.022
  21. [21] M. Pourasghar, V. Puig, and C. Ocampo-Martinez, Intervalobserver fault detection ensuring detectability and isolability byusing a set-invariance approach, IFAC-PapersOnLine, 51(24),2018, 1111–1118. https://doi.org/10.1016/j.ifacol.2018.09.727
  22. [22] C.M. Garca, V. Puig, and G.L. Osorio-Gordillo, Robust FaultEstimation based on Interval Takagi-Sugeno Unknown In-put Observer, IFAC-PapersOnLine, 51(24), 2018, 508–514.https://doi.org/10.1016/j.ifacol.2018.09.624
  23. [23] J. Banar and S.M. Razavizadeh, Resource allocationand relay selection in full-duplex cooperative orthogo-nal frequency division multiple access networks, Com-puters & Electrical Engineering, 61, 2017, 223–234.https://doi.org/10.1016/j.compeleceng.2017.01.019
  24. [24] B. Awoyemi, B. Maharaj, and A. Alfa, Optimal resourceallocation solutions for heterogeneous cognitive radio networks,Digital Communications and Networks, 3(2), 2017, 129–139.https://doi.org/10.1016/j.dcan.2016.11.003

Important Links:

Go Back