Vaishali Kalra, Dr. Rashmi Agrawal, and Srishti Sharma

View Full Paper


  1. [1] R. Sharma, P. Bhattacharyya, S. Dandapat, and H.S. Bhatt, Identifying transferable information across domains for crossdomain sentiment classification, in ACL 2018 56th Annu. Meet. Assoc. Comput. Linguist. Proc. Conf. (Long Pap. 1, 968–978 (2018). https://doi.org/10.18653/v1/p18-1089.
  2. [2] D. Bollegala, D. Weir, and J. Carroll, Using multiple sources to construct a sentiment sensitive thesaurus for cross-domain sentiment classification, ACL-HLT 2011 – Proceedings of 9th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol. 1 (2011), 132–141.
  3. [3] L. Wang, J. Niu, H. Song, and M. Atiquzzaman, SentiRelated: A cross-domain sentiment classification algorithm for short texts through sentiment related index, Journal of Network and Computer Applications 101, 2018, 111–119. https://doi.org/10.1016/j.jnca.2017.11.001.
  4. [4] X. Wan, Co-Training for Cross-Lingual Sentiment Classification (2009), 235–243.
  5. [5] M. Taboada, J. Brooke, M. Tofiloski, K. Voll, and M. Stede, Lexicon-Based Methods for Sentiment Analysis (2011).
  6. [6] M.Z. Asghar, A. Khan, S. Ahmad, M. Qasim, and I.A. Khan, Lexicon-enhanced sentiment analysis framework using rule-based classification scheme, PLoS One, 12, 2017 , 1–22. https://doi.org/10.1371/journal.pone.0171649.
  7. [7] M. Liu, Y. Song, H. Zou, and T. Zhang, Reinforced Training Data Selection for Domain Adaptation (2019), 1957–1968. https://doi.org/10.18653/v1/p19-1189.
  8. [8] O. Araque, I. Corcuera-Platas, J.F. Snchez-Rada, and C.A. Iglesias, Enhancing deep learning sentiment analysis with ensemble techniques in social applications, Expert Syst. Appl. 77, 2017, 236–246. https://doi.org/10.1016/j.eswa.2017.02.002.
  9. [9] C. Banea, R. Mihalcea, and J. Wiebe, A Bootstrapping Method for Building Subjectivity Lexicons for Languages with Scarce Resources.
  10. [10] C. J. Hutto and E. Gilbert, VADER: A Parsimonious Rulebased Model for Sentiment Analysis of Social Media Text (2014).
  11. [11] S. Baccianella, A. Esuli, and F. Sebastiani, SENTIWORDNET 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining.
  12. [12] C. Zhao, S. Wang, and D. Li, Multi-source domain adaptation with joint learning for cross-domain sentiment classification, Knowledge-Based Systems, 191, 2020, 105254. https://doi.org/10.1016/j.knosys.2019.105254.
  13. [13] A. Deshwal and S. K. Sharma, Twitter sentiment analysis using various classification algorithms, in 2016 5th International Conference on Reliability, Infocom Technologies and Optimization, ICRITO 2016: Trends and Future Directions (Institute of Electrical and Electronics Engineers Inc., 2016), 251–257. https://doi.org/10.1109/ICRITO.2016.7784960.
  14. [14] C. Hung and S.J. Chen, Word sense disambiguation based sentiment lexicons for sentiment classification, Knowledge-Based Systems 110, 2016, 224–232. https://doi.org/10.1016/j.knosys.2016.07.030.
  15. [15] H. Han, J. Zhang, J. Yang, Y. Shen, and Y. Zhang, Generate domain-specific sentiment lexicon for review sentiment analysis, Multimedia Tools and Applications, https://dl.acm.org/doi/10.5555/3269988.3270093, last accessed 2020/03/17.
  16. [16] H. Keshavarz and M.S. Abadeh, ALGA: Adaptive lexicon learning using genetic algorithm for sentiment analysis of microblogs, Knowledge-Based Systems, 122, 2017, 1–16. https://doi.org/10.1016/j.knosys.2017.01.028.
  17. [17] A. Tripathy, A. Agrawal, and S.K. Rath, Classification of sentiment reviews using n-gram machine learning approach, Expert Systems With Applications, 57, 2016, 117–126. https://doi.org/10.1016/j.eswa.2016.03.028.
  18. [18] M. Yang, D. Zhu, R. Mustafa, and K.P. Chow, Learning domain-specific sentiment lexicon with supervised sentimentaware LDA, Frontiers in Artificial Intelligence and Applications, 263, 2014, 927–932. https://doi.org/10.3233/978-161499-419-0-927.
  19. [19] D. Bollegala, D. Weir, and J. Carroll, Cross-domain sentiment classification using a sentiment sensitive thesaurus, IEEE Transactions on Knowledge and Data Engineering, 25, 2013, 1719–1731. https://doi.org/10.1109/TKDE.2012.103.
  20. [20] S.J. Pan, X. Ni, J.T. Sun, Q. Yang, and Z. Chen, Crossdomain sentiment classification via spectral feature alignment, in Proc. 19th Int. Conf. World Wide Web, WWW 2010 (2010), 751–760. https://doi.org/10.1145/1772690.1772767.
  21. [21] A.L. Maas, R.E. Daly, P.T. Pham, D. Huang, A.Y. Ng, and C. Potts, Learning Word Vectors for Sentiment Analysis.
  22. [22] J. Blitzer, R. Mcdonald, and F. Pereira, Domain Adaptation with Structural Correspondence Learning (2006).
  23. [23] Y. Bao, N. Collier, and A. Datta, A partially supervised cross-collection topic model for cross-domain text classification, in International Conference on Information and Knowledge Management, Proceedings, 2013, 239–248. https://doi.org/10.1145/2505515.2505556.
  24. [24] M. Ghiassi and S. Lee, A domain transferable lexicon set for Twitter sentiment analysis using a supervised machine learning approach, Expert Systems With Applications, 106, 2018, 197–216. https://doi.org/10.1016/j.eswa.2018.04.006.
  25. [25] M. Al-Smadi, O. Qawasmeh, M. Al-Ayyoub, Y. Jararweh, and B. Gupta, Deep recurrent neural network vs. support vector machine for aspect-based sentiment analysis of Arabic hotels’ reviews, Journal of Computational Science, 27, 2018, 386–393. https://doi.org/10.1016/j.jocs.2017.11.006.
  26. [26] Y. Zhang, L. Shang, and X. Jia, Sentiment analysis on microblogging by integrating text and image features, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Springer Verlag, 2015), 52–63 https://doi.org/10.1007/978-3319-18032-8 5.
  27. [27] M.Z. Asghar, A. Khan, S. Ahmad, and F.M. Kundi, A review of feature extraction in sentiment analysis, Journal of Basic and Applied Scientific Research, 4, 2014, 181–186.
  28. [28] U. Naseem, S.K. Khan, I. Razzak, and I.A. Hameed, Hybrid words representation for airlines sentiment analysis, in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Springer, 2019), 381–392. https://doi.org/10.1007/978-3-03035288-2 31.
  29. [29] J. Soni, K. Mathur, and Y.S. Patsariya, “Performance improvement of Nave Bayes classifier for sentiment estimation in ambiguous tweets of US Airlines, in Advances in Intelligent Systems and Computing (Springer, 2020), 195–204. https://doi.org/10.1007/978-981-15-1097-7 17.
  30. [30] A. Rane and A. Kumar, Sentiment classification system of twitter data for US airline service analysis, in Proceedings International Computer Software and Applications Conference (IEEE Computer Society, 2018), 769–773. https://doi.org/10.1109/COMPSAC.2018.00114. 85
  31. [31] M. Vadivukarassi, N. Puviarasan, and P. Aruna, A comparison of supervised machine learning approaches for categorized tweets, in Lecture Notes on Data Engineering and Communications Technologies (Springer, 2019), 422–430. https://doi.org/10.1007/978-3-030-03146-6 47.
  32. [32] S. Kiritchenko, Sentiment Analysis of Short Informal Texts, 50, 2014, 723–762.
  33. [33] B. Xiang, Improving Twitter Sentiment Analysis with TopicBased Mixture Modeling and Semi-Supervised Training (2014), 434–439.
  34. [34] N.F.F. Da Silva, L.F.S. Coletta, E.R. Hruschka, and E.R. Hruschka, Using unsupervised information to improve semi-supervised tweet sentiment classification, Information Sciences (NY), 355–356, 2016, 348–365. https://doi.org/10.1016/j.ins.2016.02.002.
  35. [35] G. Hu and Z. Du, Adaptive fuzzy control by real-time choosing multi-model architecture for uncertain nonlinear system, System, 1, 2019, 12.

Important Links:

Go Back