TRAJECTORY TRACKING AND COMPENSATION CONTROL OF REDUNDANT MANIPULATOR BASED ON INTEGRATED CONTROLLER, 362-371.

Nan Yan,∗ Gang Chen,∗∗ Jing Wu,∗ and Guiyang Jin∗

References

  1. [1] S. Zhang, Y.T. Dong, Y.C. Ouyang, Z. Yin, and K.X. Peng,Adaptive neural control for robotic manipulators with outputconstraints and uncertainties, IEEE Transactions on NeuralNetworks & Learning Systems, 29(11), 2018, 5554–5564. doi:10.1109/TNNLS.2018.2803827
  2. [2] F.F.A. Silva and B.V. Adorno, Whole-body control of a mobilemanipulator using feedback linearization and dual quaternionalgebra, Journal of Intelligent & Robotic Systems, 91(2), 2018,249–262. doi: 10.1007/s10846-017-0686-3
  3. [3] F. Ruggiero, A. Petit, D. Serra, A.C. Satici, J. Cacace, A.Donaire, F. Ficuciello, L. Buonocore, G.A. Fontanelli, V.Lippiello, L. Villani, and B. Siciliano, Nonprehensile manip-ulation of deformable objects: achievements and perspec-tives from the robotic dynamic manipulation project, IEEERobotics & Automation Magazine, 25(3), 2018, 83–92. doi:10.1109/MRA.2017.2781306
  4. [4] A. Dietrich, C. Ott, and A. Albu-Schaeffer, An overview ofnull space projections for redundant, torque-controlled robots.International Journal of Robotics Research, 34(11), 2015,1385–1400. doi: 10.1177/0278364914566516370
  5. [5] C.G. Yang, G.Z. Peng, Y.N. Li, R.X. Cui, L. Cheng,and Z.J. Li, Neural networks enhanced adaptive admittancecontrol of optimized robot-environment interaction, IEEETransactions on Cybernetics, 49(7), 2019, 2568–2579. doi:10.1109/TCYB.2018.2828654
  6. [6] W. He, Y.T. Dong, Adaptive fuzzy neural network control fora constrained robot using impedance learning, IEEE Transac-tions on Neural Networks & Learning Systems, 29(4), 2018,1174–1186. doi: 10.1109/TNNLS.2017.2665581
  7. [7] J.J. Ni, X.F. Yang, J.F. Chen, and S.X. Yang, Dy-namic bioinspired neural network for multi-robot forma-tion control in unknown environments, International Jour-nal of Robotics and Automation, 30(3), 2015, 256–266. doi:10.2316/Journal.206.2015.3.206-4217
  8. [8] E.K. Xidias, Time-optimal trajectory planning for hyper-redundant manipulators in 3D workspaces, Robotics andComputer–Integrated Manufacturing, 50, 2018, 286–298. doi:10.1016/j.rcim.2017.10.005
  9. [9] W.F. Xu, Z.G. Mu, T.L. Liu, and B. Liang, A modi-fied modal method for solving the mission-oriented inversekinematics of hyper-redundant space manipulators for on-orbit servicing. Acta Astronautica, 139, 2017, 54–66. doi:10.1016/j.actaastro.2017.06.015
  10. [10] A. Machmudah, S. Parman, and M.B. Baharom, Continuouspath planning of kinematically redundant manipulator usingparticle swarm optimization, International Journal of AdvancedComputer Science and Applications, 9(3), 2018, 207–217.
  11. [11] L. Ssebazza and Y.J. Pan, DGPS-based localization and pathfollowing approach for outdoor wheeled mobile robots, Inter-national Journal of Robotics and Automation, 30(1), 2015,13–25. doi: 10.2316/Journal.206.2015.1.206-3971
  12. [12] X.Y. Shao and D. Sun, Development of a new robot con-troller architecture with FPGA-based IC design for improvedhigh-speed performance, IEEE Transactions on Industrial In-formatics, 3(4), 2007, 312–321. doi: 10.1109/TII.2007.912360
  13. [13] G. Rishwaraj, S.G. Ponnambalam, and R.K. Chetty, Multi-robot formation control using a hybrid posture estimation strat-egy, International Journal of Robotics and Automation, 29(4),2014, 256–266. doi: 10.2316/Journal.206.2014.4.206-4078
  14. [14] P.C. Chen, J. Wan, A.N. Poo, and S.S. Ge, Formation andzoning control of multi-robot systems, International Jour-nal of Robotics and Automation, 26(1), 2011, 35–48. doi:10.2316/Journal.206.2011.1.206-3406
  15. [15] Z.X. Cai, Robotics (Beijing: Tsinghua University Press, 2015),53-105.
  16. [16] G. Chen, Y.Z. Fu, Q.X. Jia, B.N. Yuan, and D. Liu, A multi-stage regulation strategy of space manipulators with a free-swinging joint failure, Chinese Journal of Aeronautics, 34(5),2021, 573–584. doi: 10.1016/j.cja.2020.07.029
  17. [17] S. Zapolsky and E. Drumwright, Inverse dynamics with rigidcontact and friction, Autonomous Robots, 41(4), 2017, 831–863. doi: 10.1007/s10514-016-9608-7
  18. [18] M.N. Uddin and M.A. Rahman, High-speed control of IPMSMdrives using improved fuzzy logic algorithms, IEEE Trans-actions on Industrial Electronics, 54(1), 2007, 190–199. doi:10.1109/TIE.2006.888781
  19. [19] S.M. Kim, H. Kim, and K. Boo, Use of a simple mechanicalanalogy to analytically tune the PD controller of a flexiblemanipulator system, Shock and Vibration, 2018, 4073963. doi:10.1155/2018/4073963
  20. [20] W. Yin, L. Sun, M. Wang, and J.T. Liu, Amplitude sat-urated nonlinear state feedback controller for position con-trol of flexible joint robot, Robot, 39(4), 2017, 458–465. doi:10.13973/j.cnki.robot.2017.0458
  21. [21] Z.G. Mu, T.L. Liu, W.F. Xu, Y.J. Lou, and B. Liang, Dynamicfeedforward control of spatial cable-driven hyper-redundantmanipulators for on-orbit servicing, Robotica, 37(1), 2019,18–38. doi: 10.1017/S026357471800084X
  22. [22] M. Tan and D. Xu, Advanced robot control (Beijing: HigherEducation Press, 2007), 50–102.

Important Links:

Go Back