TRAJECTORY TRACKING AND COMPENSATION CONTROL OF REDUNDANT MANIPULATOR BASED ON INTEGRATED CONTROLLER

Nan Yan,∗ Gang Chen,∗∗ Jing Wu,∗ and Guiyang Jin∗

References

  1. [1] S. Zhang, Y.T. Dong, Y.C. Ouyang, Z. Yin, and K.X. Peng, Adaptive neural control for robotic manipulators with output constraints and uncertainties, IEEE Transactions on Neural Networks & Learning Systems, 29(11), 2018, 5554–5564. doi: 10.1109/TNNLS.2018.2803827
  2. [2] F.F.A. Silva and B.V. Adorno, Whole-body control of a mobile manipulator using feedback linearization and dual quaternion algebra, Journal of Intelligent & Robotic Systems, 91(2), 2018, 249–262. doi: 10.1007/s10846-017-0686-3
  3. [3] F. Ruggiero, A. Petit, D. Serra, A.C. Satici, J. Cacace, A. Donaire, F. Ficuciello, L. Buonocore, G.A. Fontanelli, V. Lippiello, L. Villani, and B. Siciliano, Nonprehensile manipulation of deformable objects: achievements and perspectives from the robotic dynamic manipulation project, IEEE Robotics & Automation Magazine, 25(3), 2018, 83–92. doi: 10.1109/MRA.2017.2781306
  4. [4] A. Dietrich, C. Ott, and A. Albu-Schaeffer, An overview of null space projections for redundant, torque-controlled robots. International Journal of Robotics Research, 34(11), 2015, 1385–1400. doi: 10.1177/0278364914566516 370
  5. [5] C.G. Yang, G.Z. Peng, Y.N. Li, R.X. Cui, L. Cheng, and Z.J. Li, Neural networks enhanced adaptive admittance control of optimized robot-environment interaction, IEEE Transactions on Cybernetics, 49(7), 2019, 2568–2579. doi: 10.1109/TCYB.2018.2828654
  6. [6] W. He, Y.T. Dong, Adaptive fuzzy neural network control for a constrained robot using impedance learning, IEEE Transactions on Neural Networks & Learning Systems, 29(4), 2018, 1174–1186. doi: 10.1109/TNNLS.2017.2665581
  7. [7] J.J. Ni, X.F. Yang, J.F. Chen, and S.X. Yang, Dynamic bioinspired neural network for multi-robot formation control in unknown environments, International Journal of Robotics and Automation, 30(3), 2015, 256–266. doi: 10.2316/Journal.206.2015.3.206-4217
  8. [8] E.K. Xidias, Time-optimal trajectory planning for hyperredundant manipulators in 3D workspaces, Robotics and Computer–Integrated Manufacturing, 50, 2018, 286–298. doi: 10.1016/j.rcim.2017.10.005
  9. [9] W.F. Xu, Z.G. Mu, T.L. Liu, and B. Liang, A modified modal method for solving the mission-oriented inverse kinematics of hyper-redundant space manipulators for onorbit servicing. Acta Astronautica, 139, 2017, 54–66. doi: 10.1016/j.actaastro.2017.06.015
  10. [10] A. Machmudah, S. Parman, and M.B. Baharom, Continuous path planning of kinematically redundant manipulator using particle swarm optimization, International Journal of Advanced Computer Science and Applications, 9(3), 2018, 207–217.
  11. [11] L. Ssebazza and Y.J. Pan, DGPS-based localization and path following approach for outdoor wheeled mobile robots, International Journal of Robotics and Automation, 30(1), 2015, 13–25. doi: 10.2316/Journal.206.2015.1.206-3971
  12. [12] X.Y. Shao and D. Sun, Development of a new robot controller architecture with FPGA-based IC design for improved high-speed performance, IEEE Transactions on Industrial Informatics, 3(4), 2007, 312–321. doi: 10.1109/TII.2007.912360
  13. [13] G. Rishwaraj, S.G. Ponnambalam, and R.K. Chetty, Multirobot formation control using a hybrid posture estimation strategy, International Journal of Robotics and Automation, 29(4), 2014, 256–266. doi: 10.2316/Journal.206.2014.4.206-4078
  14. [14] P.C. Chen, J. Wan, A.N. Poo, and S.S. Ge, Formation and zoning control of multi-robot systems, International Journal of Robotics and Automation, 26(1), 2011, 35–48. doi: 10.2316/Journal.206.2011.1.206-3406
  15. [15] Z.X. Cai, Robotics (Beijing: Tsinghua University Press, 2015), 53-105.
  16. [16] G. Chen, Y.Z. Fu, Q.X. Jia, B.N. Yuan, and D. Liu, A multistage regulation strategy of space manipulators with a freeswinging joint failure, Chinese Journal of Aeronautics, 34(5), 2021, 573–584. doi: 10.1016/j.cja.2020.07.029
  17. [17] S. Zapolsky and E. Drumwright, Inverse dynamics with rigid contact and friction, Autonomous Robots, 41(4), 2017, 831– 863. doi: 10.1007/s10514-016-9608-7
  18. [18] M.N. Uddin and M.A. Rahman, High-speed control of IPMSM drives using improved fuzzy logic algorithms, IEEE Transactions on Industrial Electronics, 54(1), 2007, 190–199. doi: 10.1109/TIE.2006.888781
  19. [19] S.M. Kim, H. Kim, and K. Boo, Use of a simple mechanical analogy to analytically tune the PD controller of a flexible manipulator system, Shock and Vibration, 2018, 4073963. doi: 10.1155/2018/4073963
  20. [20] W. Yin, L. Sun, M. Wang, and J.T. Liu, Amplitude saturated nonlinear state feedback controller for position control of flexible joint robot, Robot, 39(4), 2017, 458–465. doi: 10.13973/j.cnki.robot.2017.0458
  21. [21] Z.G. Mu, T.L. Liu, W.F. Xu, Y.J. Lou, and B. Liang, Dynamic feedforward control of spatial cable-driven hyper-redundant manipulators for on-orbit servicing, Robotica, 37(1), 2019, 18–38. doi: 10.1017/S026357471800084X
  22. [22] M. Tan and D. Xu, Advanced robot control (Beijing: Higher Education Press, 2007), 50–102.

Important Links:

Go Back