Tapas K. Maiti,∗ Sunandan Dutta,∗∗ Yoshihiro Ochi,∗∗ Mitiko Miura-Mattausch,∗∗ and Hans J. Mattausch∗∗
[1] S. Kajita, H. Hirukawa, K. Harada, and K. Yokoi, Introduction to humanoid robotics (Berlin Heidelberg: Springer-Verlag, 2014). [2] B. Siciliano and O. Khatib, Springer handbook of robotics (Berlin Heidelberg: Springer-Verlag, 2008). [3] P. Chattopadhyay, S. K. Ghoshal, and A. Majumder, Implementation of piecewise sine functions on limbless robot locomotion, International Journal of Robotics and Automation, 35(4), 2020, doi: 10.2316/j.2020.206-0159. [4] L. Tong, F. Zhang, Z. Hou, W. Wang, and L. Peng, BPAR based human joint angle estimation using multi-channel sEMG, International Journal of Robotics and Automation, 30(3), 2015, 227–237. [5] O. Tutsoy, CPG based RL algorithm learns to control of a humanoid robot leg, International Journal of Robotics Automation 30(2), 2015, 1–7. [6] X. Da, R. Hartley, and J. W. Grizzle, Supervised learning for stabilizing under actuated bipedal robot locomotion with outdoor experiments on the wave field, IEEE International Conference on Robotics and Automation, Singapore, 2017, 3476–3483. [7] F. Samadi, S. Khanmohammadi, and A. R. Ghiasi, Foot and body control of humanoid robots using fuzzy controller, International Journal of Robotics and Automation, 32(4), 2017, doi: 10.2316/Journal.206.2017.4.206-4004. [8] S. Erden and J. A. Jonkman, Physical human-robot interaction by observing actuator currents, International Journal of Robotics and Automation, 27(3), 2012, 233–243. [9] R. Zhao and D. Sidobre, A framework for human-robot interaction in collaborative manufacturing environments, International Journal of Robotics and Automation, 34(6), 2019, doi: 10.2316/J.2019.206-0220. [10] M. Vukobratovic and B. Borovac, Zero-moment point – thirty five years of its life, International Journal of Humanoid Robotics, 1(1), 2004, 157–173. [11] G. Metta, L. Natale, F. Nori, G. Sandini, D. Vernon, L. Fadiga, C. Hofsten, K. Rosander, M. Lopes, J. Santos-Victor, A. Bernardino, and L. Montesano, The iCub humanoid robot: an open-systems platform for research in cognitive development, Neural Networks, 23(8), 2010, 1125–1134. [12] SoftBank Robotics, 2018, https://www.softbankrobotics.com [13] ASIMO Technical Information, Honda Motor Co., Ltd., 2007. [14] S. Feng, X. Xinjilefu, C. Atkeson, and J. Kim, Optimization based controller design and implementation for the atlas robot in the DARPA robotics challenge finals, IEEE-RAS International Conference on Humanoid Robots, Seoul, Korea, 2015, 1028–1035. [15] K. Kaneko, F. Kanehiro, M. Morisawa, T. Tsuji, K. Miura, S. Nakaoka, S. Kajita, and K. Yokoi, Hardware improvement of cybernetic human HRP-4C for entertainment use, IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, 2011, 4392–4399. [16] J. Y. Kim, I. W. Park, and J. H. Oh, Experimental realization of dynamic walking of the biped humanoid robot KHR-2 using zero moment point feedback and inertial measurement, Advanced Robotics, 20(6), 2006, 707–736. [17] I.-W. Park, J.-Y. Kim, J. Lee, and J.-H. Oh, Mechanical design of the humanoid robot platform HUBO, Advanced Robotics, 21(11), 2007, 1305–1322. [18] Z. Tan, Study on mechanics laws for anthropomorphic biped robots to walk dynamically on sloping surface, IEEE International Conference on Robotics and Automation (ICRA), Minneapolis, Minnesota, 1996, 252–257. [19] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, IEEE International Conference on Robotics and Automation (ICRA), Taipei, Taiwan, 2003, 1620–1626. [20] F. Ali, A. Z. H. Shukor, M. F. Miskon, M. K. Nor, and S. I. M. Salim, 3-D biped robot walking along slope with dual length linear inverted pendulum method (DLLIPM), International Journal of Advanced Robotic Systems, 10(11), 2013, 377–388. [21] F. Guo, T. Mei, M. Ceccarelli, Z. Zhao, T. L. and J. Zhao, A generic walking pattern generation method for humanoid robot walking on the slope, Industrial Robot: An International Journal, 43(3), 2016, 317-327. [22] L. Meng, M. Ceccarelli, Z. Yu, X. Chen, and Q. Huang, An experimental characterization of human falling down, Mechanical Sciences, 8 (1), 2017, 79-89. [23] L. Capisani and A. Ferrara, Trajectory planning and secondorder sliding mode motion/interaction control for robot 343 manipulators in unknown environments, IEEE Transactions on Industrial Electronics, 59(8), 2012, 3189–3198. [24] N. Hogan, A general actuator model based on nonlinear equivalent networks, IEEE /ASME Transactions on Mechatronics, 19(6), 2014, 1929–1939. [25] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and Control (New York: John Wiley & Sons, 2006). [26] J. Chen, M. Henrie, M. F. Mar, and M. Nizic, Mixed-signal methodology guide (Cadence Design Systems Inc., 2012). [27] SystemVision Multi-Discipline Development Environment: Integrated, scalable environment for circuit, system and mechatronic modeling, 2018. https://www.mentor.com/ products/sm/system integration simulation analysis/systemvision/ [28] P. A. Schmidt, E. Malb, and R. P. Wrtz, A sensor for dynamic tactile information with applications in human–robot interaction and object exploration, Robotics and Autonomous Systems, 54(12), 2006, 1005–1014. [29] H. Zhang and E. So, Hybrid resistive tactile sensing, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 32(1), 2002, 57–65. [30] J. Dargahi, M. Parameswaran, and S. Payandeh, A micromachined piezoelectric tactile sensor for an endoscopic graspertheory, fabrication and experiments, Journal of Microelectromechanical Systems, 9(3), 2000, 329–335. [31] T. K. Maiti, L. Chen, M. Miura-Mattausch, S. K. Koul, and H. J. Mattausch, Physics based system simulation for robot electro-mechanical control design, Electron Devices Technology and Manufacturing Conference, Toyama, Japan, 2017, 259– 261. [32] T. K. Maiti, Y. Ochi, D. Navarro, M. Miura-Mattausch, and H. J. Mattausch, Walking robot movement on non-smooth surface controlled by pressure sensor, Advanced Material Letters, 9(2), 2018, 23–127. [33] S. Dutta, T. K. Maiti, Y. Ochi, M. Miura-Mattausch, S. Bhattacharya, D. Navarro, N. Yorino, and H. Jrgen Mattausch, Self-controlled walking robot with gyro sensor network for stable movement on non-smooth surface, IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots, Brisbane, Australia, 2018, 42–48. [34] T. K. Maiti, S. Dutta, S. Bhattacharya, Y. Ochi, D. Navarro, M. Miura-Mattausch, and H. J. Mattausch, Modeling of multidimensional system and its application for robot development, International Symposium on Devices, Circuits and Systems, Kolkata, India, 2018, 1–4. [35] T. K. Maiti, L. Chen, H. Zenitani, H. Miyamoto, M. MiuraMattausch, and H. J. Mattausch, Compact electro-mechanicalfluidic model for actuated fluid flow system, IEEE Journal on Multiscale and Multiphysics Computational Techniques, 2(1), 2017, 124–133. [36] M. Kalantari, J. Dargahi, J. Kvecses, M. G. Mardasi, and S. Nouri, A new approach for modeling piezoresistive force sensors based on semiconductive polymer composites, IEEE/ASME Transactions on Mechatronics, 17(3), 2012, 572–581. [37] Force Sensors for Design, Tekscan Inc., USA, Feb. 2017, www.tekscan.com [38] S. D. Senturia, Microsystems Design (Norwell, MA: Kluwer Academic Publisher, 2001). [39] A. Nathan and H. Baltes, Microsystem simulation, in Microtransducer CAD, (Vienna: Springer-Verlag Wien 1999), ch. 9, 76. [40] KHR-3HV Humanoid Robot, Kondo Kagaku Co. Ltd., 2021, http://kondo-robot.com [41] B. Brogliato and P. Orhant, Contact stability analysis of a one degree-of-freedom robot, Dynamics and Control, 8(1), 1998, 37–53. [42] T. Sugihara and Y. Fujimoto, Dynamics Analysis: Equations of Motion, in A. Goswami and P. Vadakkepat (eds.) Humanoid Robotics: A Reference, (Springer Netherlands: Springer Nature B V, 2019). [43] K. Miura, M. Morisawa, F. Kanehiro, S. Kajita, K. Kaneko, and K. Yokoi, Human-like walking with toe supporting for humanoids, IEEE International Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, 2011, 4428–4435. [44] S. Kajita, K. Kaneko, K. Harada, F. Kanehiro, K. Fujiwara, and H. Hirukawa, Biped walking on a low friction floor, IEEE International Conference on Intelligent Robots and Systems, Sendai, Japan, 2004, 3546–3552. [45] S. Bhattacharya, A. Luo, T. K. Maiti, S. Dutta, Y. Ochi, M. Miura-Mattausch, and H. J. Mattausch, Surface-property recognition with force sensors for stable walking of humanoid robot, IEEE Access, 7, 2019, 146443–146456. [46] H. Hemami and V. C. Jaswa, On the three-link model of the dynamics of standing up and sitting down, IEEE Transactions on Systems, Man, and Cybernetics, 8(2), 115–120. [47] Y. Fujimoto and S. Kajita, A biped walking robot based on position control, Journal of the Robotics Society of Japan, 30(4), 2012, 344–349. [48] S. Kajita, Feedback Control of Inverted Pendulums, in A. Goswami and P. Vadakkepat (eds.), Humanoid Robotics: A Reference, (Springer Netherlands: Springer Nature B V, 2019). [49] J. E. Pratt, C. Ott, and S.-H. Hyon, Introduction to Humanoid Balance, in A. Goswami and P. Vadakkepat (eds.), Humanoid robotics: A reference (Springer Netherlands: Springer Nature B V, 2019). [50] S. Hyon, J. G. Hale, and G. Cheng, Full-body compliant humanhumanoid interaction: balancing in the presence of unknown external forces, IEEE Transactions on Robotics, 23(5), 2007, 884–898. [51] S.-H. Lee and A. Goswami, Ground reaction force control at each foot: a momentum-based humanoid balance controller for non-level and non-stationary ground, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, 2010, 3157–3162. [52] J. Pratt, J. Carff, S. Drakunov, and A Goswami, Capture point: a step toward humanoid push recovery, IEEE-RAS International Conference on Humanoid Robots, Genova, Italy, 2006, 200–207. [53] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, IEEE International Conference on Robotics and Automation, Taipei, Taiwan, 2003, 1620–1626. [54] Y. Choi, D. Kim, Y. Oh, and B. J. You, Posture/walking control for humanoid robot based on kinematic resolution of CoM Jacobian with embedded motion, IEEE Transactions on Robotics, 23(6), 2007, 1285–1293.
Important Links:
Go Back