Tran D. Dung∗ and Genci Capi∗


  1. [1] G.A. Zachiotis, G. Andrikopoulos, R. Gornez, K. Nakamura, et al., A survey on the application trends of home service robotics, 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 2018, 1999–2006.
  2. [2] J.J. Leonard and H.F. Durrant-Whyte, Simultaneous map building and localization for an autonomous mobile robot, Proceedings IROS’91: IEEE/RSJ International Workshop on Intelligent Robots and Systems’ 91, Osaka, Japan, 1991, 1442– 1447.
  3. [3] T. Taketomi, U. Hideaki, and S. Ikeda, Visual SLAM algorithms: A survey from 2010 to 2016, IPSJ Transactions on Computer Vision and Applications, 9, 2017, 16.
  4. [4] A.J. Davison, I.D. Reid, N.D. Molton, and O. Stasse, MonoSLAM: Real-time single camera SLAM, IEEE Transactions on Pattern Analysis & Machine Intelligence, 6, 2007, 1052–1067.
  5. [5] G. Klein and D. Murray, Parallel tracking and mapping for small AR workspaces, Proceedings of the IEEE ACM International Symposium Mixed Augmented Reality, Nara, Japan, November 2007, 225–234.
  6. [6] R. Mur-Artal, J.M.M. Montiel, and J.D. Tardos, ORB-SLAM: A versatile and accurate monocular SLAM system, IEEE Transactions on Robotics, 31(5), 2015, 1147–1163.
  7. [7] R.A. Newcombe, S.J. Lovegrove, and A.J. Davison, DTAM: Dense tracking and mapping in real-time, IEEE International Conference on Computer Vision, Barcelona, Spain, 2011, 2320–2327.
  8. [8] J. Engel, T. Schöps, and D. Cremers, LSD-SLAM: Large-scale direct monocular SLAM, European Conference on Computer Vision, Zurich, Switzerland, 2014, 834–849.
  9. [9] C. Forste, M. Pizzoli, and D. Scaramuzza, SVO: Fast semi-direct monocular visual odometry, IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 2014, 15–22.
  10. [10] J. Engel, V. Koltun, and D. Cremers, Direct sparse odometry, IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(3), 2017, 611–625.
  11. [11] R.A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, et al., Kinectfusion: Real-time dense surface mapping and tracking, 10th IEEE International Symposium on Mixed and Augmented Reality ISMAR, Basel, Switzerland, 2011, 127–136.
  12. [12] R.F. Salas-Moreno, R.A. Newcombe, H. Strasdat, P.H. Kelly, et al., Slam++: Simultaneous localisation and mapping at the level of objects, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Orlando, USA, 2013, 1352–1359.
  13. [13] T.D. Dung, D. Hossain, S.I. Kaneko, and G. Capi, Multifeature image indexing for robot localization in textureless environments, Robotics, 8(2), 2019, 37.
  14. [14] P.J. Herrera, G. Pajares, M. Guijarro, J.J. Ruz, et al., A featured-based strategy for stereovision matching in sensors with fish-eye lenses for forest environments, Sensors, 9(12), 2009, 9468–9492.
  15. [15] J. McCormac, A. Handa, A. Davison, S. Leutenegger, et al., Semanticfusion: Dense 3D semantic mapping with convolutional neural networks, IEEE International Conference on Robotics and automation (ICRA), Singapore, 2017, 4628–4635.
  16. [16] C. Zhao, L. Sun, P. Purkait, T. Duckett, et al., Dense RGB-D semantic mapping with pixel-voxel neural network, Sensors, 18(9), 2018, 3099.
  17. [17] T. Whelan, S. Leutenegger, R. Salas-Moreno, B. Glocker, et al., In: Proceedings of Robotics: Science and Systems. ElasticFusion: Dense SLAM without a pose graph, Robotics: Science and Systems, 2015.
  18. [18] J.W. Hart, R. Shah, S. Kirmani, N. Walker, et al., PRISM: Pose registration for integrated semantic mapping, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 2018, 896–902.
  19. [19] C. Case, B. Suresh, A. Coates, and A.Y. Ng, Autonomous sign reading for semantic mapping, IEEE International Conference on Robotics and Automation, Shanghai, China, 2011, 3297– 3303.
  20. [20] M. Mielle, M. Magnusson, and A.J. Lilienthal, A method to segment maps from different modalities using free space layout MAORIS: Map of ripples segmentation, International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 2018, 4993–4999.
  21. [21] R. Bormann, F. Jordan, W. Li, J. Hampp et al., Room segmentation: Survey, implementation, and analysis, IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 2016, 1019–1026.
  22. [22] Y. He, B. Liang, Y. Zou, and J. Yang, Depth errors analysis and correction for time-of-flight (ToF) cameras, Sensors, 17(1), 2017, 92.
  23. [23] L.E. Kavraki, P. Svestka, J.C. Latombe, and M.H. Overmars, Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Transactions on Robotics and Automation, 12(4), 1996, 566–580.
  24. [24] R.C. Coulter, implementation of the pure pursuit path tracking algorithm, CMU-RI-TR-92-01. Carnegie-Mellon UNIV Pittsburgh PA Robotics INST, 1992.
  25. [25] T.D. Dung, H. Delowar, and G. Capi, Neural network-based robot navigation in indoor environments using depth image, The IEEJ International Workshop on Sensing, Actuation, Motion Control, and Optimization (SAMCON), Chiba, Japan, 2019, 1–6.
  26. [26] X. Li and R. Belaroussi, Semi-dense 3D semantic mapping from monocular slam, arXiv preprint arXiv:1611.04144, 2016.
  27. [27] S. Yang, Y. Huang, and S. Scherer, Semantic 3D occupancy mapping through efficient high order CRFs, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, Canada, 2017, 590–597.

Important Links:

Go Back