DESIGN AND CONTROL OF A REHABILITATION ROBOT MANIPULATOR FOR HEAD–NECK ORTHOPAEDIC DISORDERS

Atilla Bayram and Ahmet S. Duru

References

  1. [1] N. Tejima, Rehabilitation robotics: a review, Advanced Robotics, 14(7), 2001, 551–564.
  2. [2] V. Klamroth-Marganska, L. Blanco, K. Campen, A. Curt A, V. Dietz, T. Ettlin, et al., Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallelgroup randomised trial, The Lancet Neurology, 13(2), 2014, 159–166.
  3. [3] J. Hidler, D. Nichols, M. Pelliccio, and K. Brady, Advances in the understanding and treatment of stroke impairment using robotic devices, Topics in Stroke Rehabilitation, 12(2), 2005, 22–35.
  4. [4] A. Ehsani-Seresht, M.M. Moghaddam, and M.R. Hadian, Joint function control method for robotic gait training of stroke patients, International Journal of Robotics and Automation, 35(3), 2020.
  5. [5] S. Hesse, J. Mehrholz, and C. Werner, Robot-assisted upper and lower limb rehabilitation after stroke, Deutsches Aerzteblatt Online, 105(18), 2008, 330–336.
  6. [6] P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. JanisenTroy, and S. Leonhardt, A survey on robotic devices for upper limb rehabilitation, Journal of NeuroEngineering and Rehabilitation, 11(1), 2014. 3–32.
  7. [7] G. Yin, X. Zhang, and J.C. Chen, An approach for sEMGbased variable damping control of lower limb rehabilitation robot, International Journal of Robotics and Automation, 35(3), 2020.
  8. [8] M.A. Gull, S. Bai, and T. Bak, A review on design of upper limb exoskeletons, Robotics, 9(1), 2020, 16.
  9. [9] L.C. Hsu, W.W. Wang, G.D. Lee, Y.W. Liao YW, L.C. Fu, and J.S. Lai, A gravity compensation-based upper limb rehabilitation robot, Proceedings of the American Control Conference, Montr`eal, Canada, 2012, 4819–4824.
  10. [10] A. Toth, G. Fazekas, G. Arz, M. Jurak, and M. Horvath, Passive robotic movement therapy of the spactic hemiparetic arm with REHAROB: report of the first clinical test and the follow-up system improvement, 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 2005, 127–130.
  11. [11] H.I. Krebs, M. Ferraro, S.P. Buerger, M.J. Newbery, et al., Rehabilitation robotics: Pilot trial of a spatial extension for MIT-Manus, Journal of NeuroEngineering and Rehabilitation, 1(1), 2004, 5.
  12. [12] L.R. MacClellan, D.D. Bradham, J. Whitall, B. Volpe, P.D. Wilson, J. Ohlhoff, C. Meister, N. Hogan, H.I. Krebs, and C.T. Bever, Robotic upper-limb neurorehabilitation in chronic stroke patients, The Journal of Rehabilitation Research and Development, 42(6), 2005, 717.
  13. [13] P. Staubli, T. Nef, V. Klamroth-Marganska, and R. Riener, Effects of intensive arm training with the rehabilitation robot ARMin II in chronic stroke patients: four single-cases, Journal of NeuroEngineering and Rehabilitation, 6(1), 2009, 46.
  14. [14] B. Jobbágy, D. ˇSimˇs´ık, J. Karch`oák, and D. Onofrejová, Robotic arm with artificial muscles in rehabilitation, Procedia Engineering, 96, 2014, 195–202.
  15. [15] J. Xu, L. Xu, Y. Li, G. Cheng, J. Shi, J. Liu, and S. Chen, A multi-channel reinforcement learning framework for robotic mirror therapy, IEEE Robotics and Automation Letters, 5(4), 2020, 5385–5392.
  16. [16] H. Miwa, T. Okuchi, H. Takanobu, and A. Takanishi, Development of a new human-like head robot WE-4, IEEE International Conference on Intelligent Robots and Systems, Laussanne, Switzerland, 2002, 2443–2448.
  17. [17] O. Olcucuoglu, A.B. Koku, and E.I. Konukseven, I-RoK: A human like robotic head, 7th IEEERAS International Conference on Humanoid Robots, IEEE, 2007, 442–446.
  18. [18] T. Asfour, K. Welke, P. Azad, A. Ude, and R. Dillmann, The Karlsruhe humanoid head, 8th IEEERAS International Conference on Humanoid Robots, Daejeon, Korea, 2008, 447– 453.
  19. [19] X. Yun and V.R. Kumar, An approach to simultaneous control of trajectory and interaction forces in dual-arm configdurations, IEEE Transactions on Robotics and Automation, 7(3), 1991, 618–625.
  20. [20] N. Yagiz, Y. Hacioglu, and Y.Z. Arslan, Load transportation by dual arm robot using sliding mode control, Journal of Mechanical Science and Technology, 25(5), 2010, 1177–1184.
  21. [21] C. Wang, Z. Sun, J. Wei, Q. Liu, Y. Shen, Y. Wang, et al., Kinematics and dynamics analysis of a two-arms rehabilitation robot. IEEE International Conference on Intelligence and Safety for Robotics, ISR, 2018, 355–360.
  22. [22] G. Li, S. Cai, and L. Xie, Configuration optimization of a dual-arm rehabilitation robot, 3rd International Conference on Robotics and Automation Engineering; ICRAE, 2018, 55–59.
  23. [23] G. Li, S. Cai, and L. Xie, Cooperative control of a dualarm rehabilitation robot for upper limb physiotherapy and training, IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM, 2019, 802–807.
  24. [24] J.F. Liu and K. Abdel-Malek, Robust control of planar dual-arm cooperative manipulators, Robotics and Computer-Integrated Manufacturing, 16(2–3), 2000, 109–119.
  25. [25] F. Caccavale, P. Chiacchio, A. Marino, and L. Villani, SixDOF impedance control of dual-arm cooperative manipulators, IEEE/ASME Transactions on Mechatronics, 13(5), 2008, 576– 586.
  26. [26] Y. Ren, Y. Liu, M. Jin, and H. Liu, Biomimetic object impedance control for dual-arm cooperative 7-DOF manipulators, Robotics and Autonomous Systems, 75, 2016, 273–287.
  27. [27] H. Tamas, Control of redundant multi-manipulator systems, master’s thesis, Budapest University of Technology and Economics, Departmant of Control Engineering and Information Technology, Budapest, 2006.
  28. [28] L.A. Tuan, Y.H. Joo, P.X. Duong, and L.Q. Tien, Parameter estimator integrated-sliding mode control of dual arm robots, International Journal of Control, Automation and Systems, 15(6), 2017, 2754–2763.
  29. [29] W. He, X.X. Yu, Z. Li, and C. Yang, Admittance-based controller design for physical human-robot interaction in the constrained task space, IEEE Transactions on Automation Science and Engineering, 17(4), 2020, 1937–1949.
  30. [30] X. Yu, W. He, H. Li, and J. Sun, Adaptive fuzzy fullstate and output-feedback control for uncertain robots with output constraint, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 1–14.
  31. [31] M. Li, K. Li, P. Wang, Y. Liu, F. Zha, and W. Guo, Indirect adaptive impedance control for dual-arm cooperative manipulation, 2nd International Conference on Advanced Robotics and Mechatronics, ICARM, Harbin, China, 2017, 650–655.
  32. [32] M.K. ¨Ozgören. Kinematic analysis of spatial mechanical systems using exponential rotation matrices, Journal of Mechanical Design, 129(11), 2006, 1144–1152.
  33. [33] W. Chung, L. Fu, and S. Hsu, Motion control, in B. Siciliano and O. Khatib (eds.), Handbook of robotics (Springer, USA, 2008, Chapter 2), 133–157.
  34. [34] D. Popescu, D. Selisteanu, C. Ionete, M. Roman, and L. Popescu, Neural and adaptive control strategies for a rigid link manipulator, in Robot manipulators trends and development, Romania, InTech, 2010, 249–266.
  35. [35] N. Shawki, G. Lazarou, and D.R. Isenberg, Stability and performance analysis of a payload-manipulating robot without adaptive control, International Journal of Robotics and Automation, 35(1), 2020.
  36. [36] Online Recourse 1, 2020, https://drive.google.com/file/d/ 1a0qetpqkrh7BA5vDQ2roTNvZRgxvljvN/view?usp=sharing

Important Links:

Go Back