TRAJECTORY TRACKING CONTROL SYSTEM OF WHEELED MOBILE ROBOT BASED ON PID FEED-FORWARD

Huaizhong Chen∗ and Jianmei Ye∗

References

  1. [1] Panahandeh P., Alipour K., Tarvirdizadeh B., & Hadi A.A self-tuning trajectory tracking controller for wheeled mobile robots. Industrial Robot, 46(6), 2019, 828–838. https://doi.org/10.1108/IR-02-2019-0032
  2. [2] Gheisarnejad M., & Khooban M. H. Supervised control strategy in trajectory tracking for a wheeled mobile robot.IET Collaborative Intelligent Manufacturing, 1(1), 2019, 3-9. DOI: 10.1049/iet-cim.2018.0007
  3. [3] Cai J., Jiang H., Long C., Liu J., Cai Y., & Wang J. Implementation and Development of a Trajectory Tracking Control System for Intelligent Vehicle. Journal of Intelligent & Robotic Systems, 94(1), 2019, 251–264. DOI:10.1007/s10846018-0834-4
  4. [4] Bei X., Ping X., & Gao W. Trajectory Tracking Control of Wheeled Mobile Robots under Longitudinal Slipping Conditions. China Mechanical Engineering, 29(16), 2018, 1958–1964.
  5. [5] Yan F., Li B., Shi W., & Wang D. Hybrid Visual Servo Trajectory Tracking of Wheeled Mobile Robots. IEEE Access, 6, 2018, 24291-24298. DOI: 10.1109/ACCESS.2018.2829839
  6. [6] Xie D., Xu Y., Wan J., Han D., Lu F. Trajectory Tracking Control of Wheeled Mobile Robots Based on RTK-GPS. Robot, 39(2), 2017, 221-229. DOI: 10.13973/j.cnki.robot.2017.0221
  7. [7] Binh N. T., Tung N. A., Nam D. P., & Quang N. H. An Adaptive Backstepping Trajectory Tracking Control of a Tractor Trailer Wheeled Mobile Robot. International Journal of Control, Automation and Systems, 17(2), 2019, 465–473. https://doi.org/10.1007/s12555-017-0711-0
  8. [8] Bertrand S., Gunard N., Hamel T., Piet-Lahanier H., & Eck L. A hierarchical controller for miniature VTOL UAVS, Design and stability analysis using singular perturbation theory. Control Engineering Practice, 19(10), 2011, 1099–1108. https://doi.org/10.1016/j.conengprac.2011.05.008
  9. [9] Chen Z., Liu Y., He W., Qiao H., & Ji H.Adaptive-NeuralNetwork-Based Trajectory Tracking Control for a Nonholonomic Wheeled Mobile Robot With Velocity Constraints. IEEE Transactions on Industrial Electronics, 68(6), 2021, 5057– 5067.DOI: 10.1109/TIE.2020.2989711
  10. [10] Kobayashi M., & Motoi N. Hybrid Control of Trajectory Planning for Desired Trajectory and Collision Avoidance Based on Optimization Problem for a Wheeled Mobile Robot. IEEJ Journal of Industry Applications, 9(4), 2020, 331–340. https://doi.org/10.1541/ieejjia.9.331
  11. [11] Liu J.K. Robot control system design and MATLAB simulation. Tsinghua University Press, 2008, 5–18. 113
  12. [12] Wang Q., Gao L., Yang Y., Zhao J., Dou T., & Fang H. A load-balanced algorithm for multi-controller placement in software-defined network. Mechatronic Systems and Control, 46(2), 2018, 72–81. DOI: 10.2316/Journal.201.2018.2.201-2975.
  13. [13] Zheng W.Y., Li Y.W. Trajectory tracking of wheeled mobile robot based on feed-forward and feedback controller. Computer Engineering and Design, 38(2), 2017, 539–543. DOI: 10.16208/j.issn1000-7024.2017.02.048
  14. [14] Liu J.K. MATLAB simulation of advanced PID control. Beijing: Electronic Industry Press, 2016, 483–489.
  15. [15] Amirkhani A., Shirzadeh M., Shojaeefard M. H., & Abraham A. Controlling wheeled mobile robot considering the effects of uncertainty with neuro-fuzzy cognitive map Amirkhani. ISA Transactions, 100, 2020, 454–468. https://doi.org/10.1016/j.isatra.2019.12.011
  16. [16] Perera L. S. C., Amarakoon K. A. M. S. V., Weerakoon W. M. D. S., Godaliyadda G. M. R. I., & Ekanayake M. P. B. Enhanced feature space clustering via spectral parameter weighting foracoustic fingerprinting based indoor localization. Mechatronic Systems and Control, 44(3), 2016. DOI: 10.2316/Journal.201.2016.3.201-2757
  17. [17] Zhang D.D., Sun C.Y., Hu X.Y., and Zhang, J. Cross-coupling synchronous control of double brushless dc motor based on variable domain fuzzy PID. Mechatronic Systems and Control, 49(1), 2021. DOI: 10.2316/J.2021.201-0076
  18. [18] Zhai G., Ren C., & Meng L. Design of Planetary-Wheeled Mobile Robot and Analysis of Obstacles Crossing Ability. International Journal of Robotics and Automation, 35(2), 2020. DOI: 10.2316/J.2020.206-0229
  19. [19] Ayten K. K., iplak M. H., & Dumlu A. Implementation a fractional order adaptive model based PID type sliding control for wheeled mobile robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 233(8), 2019, 1067-1084. https://doi.org/10.1177/0959651819847395
  20. [20] Nguyena T., Hoang T., Pham M., & Dao N.A Gaussian wavelet network-based robust adaptive tracking controller for a wheeled mobile robot with unknown wheel slips.International Journal of Control, 92(11), 2019, 2681– 2692. https://doi.org/10.1080/00207179.2018.1458156
  21. [21] Puninchathaya P.D., Rao M., Rao R., Kumar S., and Ahmed R.M. Experimental investigations on flexurally amplified piezoactuator based active vibration isolation system using PID controller. Mechatronic Systems and Control, 49(3), 2021. DOI: 10.2316/J.2021.201-0188

Important Links:

Go Back