S. Adarsh,∗ K. I. Ramachandran,∗∗ and Binoy B. Nair∗


  1. [1] Datasheet HC SR-04:, Ultrasonic Ranging Module HC - SR04 –Datasheet, Mouser Electronics, Accessed Nov 18, 2020.
  2. [2] Ch.K. Volos, I.M. Kyprianidis, and I.N. Stouboulosb, Exper-imental investigation on coverage performance of a chaoticautonomous mobile robot, Robots in Automotive Systems 61,2013, 1314–1322.
  3. [3] S. Adarsh and K.I. Ramachandran, Design of sensor datafusion algorithm for mobile robot navigation using anfis and itsanalysis across the membership functions, Automatic Controland Computer Sciences 52, 2018, 382–391.
  4. [4] V.A. Zhmud, N.O. Kondratiev, K.A. Kuznetsov, V.G. Trubin,and L.V. Dimitrov, Application of ultrasonic sensor for mea-suring distances in robotics, Journal of Physics: ConferenceSeries. 2018, 1–9.
  5. [5] P.K. Mvemba, S.K. Guwa Gua Band, A. Lay-Ekuakille, andN.I Giannoccaro, Advanced acoustic sensing system on amobile robot: Design, construction and measurements, IEEEInstrumentation and Measurement Magazine, 21, 2018, 4–9.
  6. [6] F. Gueuning, M. Varlan, C. Eugene, and P. Dupuis, Accuratedistance measurement by an autonomous ultrasonic systemcombining time-of-flight and phase-shift methods, Proc IEEEInstrumentation and Measurement Technology Conference andIMEKO Tec, 1996, 399–404.
  7. [7] P. Khoenkaw and P. Pramokchon, A software based methodfor improving accuracy of ultrasonic range finder module,Proceedings of International Conference on Digital Arts Mediaand Technology, 2017, 10–13.207
  8. [8] R. Abdubrani and S.S.N. Alhady, Performance improvementof contactless distance sensors using neural network, Pro-ceedings of 11th WSEAS International Conference on In-strumentation Measurement, Circuits and Systems, 2012,146–151.
  9. [9] A. Carullo, F. Ferraris, S. Graziani, U. Grimaldi, and M.Parvis, Ultrasonic distance sensor improvement using a two-level neural network, IEEE Instrumentation and MeasurementTechnology Conference, 1995, 828–833.
  10. [10] J.S.R. Jang and C.T. Sun, Neuro-fuzzy modeling and control,Proceedings of IEEE, 83, 1995, 378-406.
  11. [11] A. Al-Mayyahi, W. Wang, and P. Birch, Adaptive neuro-fuzzytechnique for autonomous ground vehicle navigation, Robotics,3, 2014, 349–370.
  12. [12] S. Nefti, M. Oussalah, K. Djouani, and J. Pontnau, Intelligentadaptive mobile robot navigation, Journal of Intelligent andRobotic Systems, 30, 2001, 311–329.
  13. [13] K.V. Shihabudheen and G.N. Pillai, Recent advances in neuro-fuzzy system: A survey. Knowledge-Based Systems, 152, 2018,136–162.
  14. [14] K. Saadeddin, M.F. Abdel-Hafez, M.A. Jaradat, and M.A.Jarrah, Performance enhancement of low-cost, high-accuracy,state estimation for vehicle collision prevention system usingANFIS, Mechanical Systems and Signal Processing, 41(1–2),2013, 239–253.
  15. [15] T. Huang, P. Yang, K. Yang, and Y. Zhu, Navigation of mobilerobot in unknown environment based on T-S neuro-fuzzysystem, International Journal of Robotics and Automation,30(4), 2015, doi: 10.2316/Journal.206.2015.4.206-4344.
  16. [16] G.N. Marichal, A. Hernndez, L. Acosta, and E.J. Gonzlez,A neuro-fuzzy system for extracting environment featuresbased on ultrasonic sensors, Sensors, 9, 2009, 10023–10043.doi:10.3390/s91210023.
  17. [17] B. Khoshnevisan, S. Rafiee, M. Omid, and H. Mousazadeh,Development of an intelligent system based on ANFIS forpredicting wheat grain yield on the basis of energy inputs,Information Processing in Agriculture, 1, 2014, 14–22.
  18. [18] J.S.R. Jang, ANFIS: Adaptive-network-based fuzzy inferencesystems, IEEE Transactions on Systems, Man, and Cybernet-ics: Systems, 23, 1993, 665–684.
  19. [19] K.V. Shihabudheen and G.N. Pillai, Recent advances in neuro-fuzzy system: A survey, Knowledge-Based Systems, 152, 2018,136–162.
  20. [20] M. Supriya, K. Sangeetha, and G.K. Patra, Comparison oftrust values using triangular and Gaussian fuzzy membershipfunctions for infrastructure as a service, Proceedings of Inter-national Conference on Advances in Communication, Networkand Computing, 2014, 737–747.
  21. [21] Foundations of fuzzy logic:, Accessed Nov. 18,2020.
  22. [22] J. Dong, D. Zhuang, Y. Huang, and J. Fu, Advances inmulti-sensor data fusion: algorithms and applications, Sensors(Basel), 9(10), 2009, 7771–7784.
  23. [23] Z.J. Viharos and K.B. Kis, Diagnostics of wind turbines basedon incomplete sensor data, in XX IMEKO World Congress- Metrology for Green Growth, Republic of Korea, 2012, vol.644, p. 6.
  24. [24] A.J. Smola and B.S.C.H. Scholkopf, A tutorial on sup-port vector regression, Statistics and Computing, 14, 2004,199–222.
  25. [25] S. Rajasekaran, S. Gayathri, and T.L. Lee, Support vectorregression methodology for storm surge predictions, OceanEngineering, 35(16), 2008, 1578–1587.
  26. [26] H. Yang, K. Huang, I. King, and M.R. Lyu, Localized supportvector regression for time series prediction, Neurocomputing,72(10–12), 2009. 2659–2669.
  27. [27] D. Lei, Static error correction of the sensor basedon SVR, 2012 8th International Conference on Natu-ral Computation, Chongqing, 2012, pp. 106–109. doi:10.1109/ICNC.2012.6234714.
  28. [28] K. Tanaka, K. Yamano, and E. Kondo, A vision system fordetecting mobile robots in office environments, Proceedings ofInternational Conference on Robotics and Automation 2004,ICRA 2004, April 2004.
  29. [29] S. Sinalkar and B.B. Nair, Stereo vision-based path planningsystem for an autonomous harvester, International Conferenceon Soft Computing and Signal Processing- ICSCSP 2019, 2020,pp. 499–510. doi: 10.1007/978-981-15-2475-2 46.
  30. [30] R. Athavale, D.S. Harish Ram, and B.B. Nair, Low costsolution for 3D mapping of environment using 1D LIDARfor autonomous navigation, IOP Conference Series: MaterialsScience and Engineering, 561(1), 2019. doi: 10.1088/1757-899X/561/1/012104.
  31. [31] User manual CP-3007:, Accessed Nov. 18, 2020.

Important Links:

Go Back